SNAP-X: Development of a Mutagenesis Strategy and High Density Protein Array to Comprehensively Display Protein Variants
SNAP-X:开发诱变策略和高密度蛋白质阵列以全面展示蛋白质变体
基本信息
- 批准号:10203604
- 负责人:
- 金额:$ 12.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAdministrative SupplementAffectAmino Acid SubstitutionAntibodiesAreaAwardBackBindingBiological AssayBiological ModelsCOVID-19Cancer PatientCellsCollectionCommunicable DiseasesCommunitiesDataDevelopmentEnsureExploratory/Developmental GrantGenomeHumanImmunofluorescence ImmunologicIndividualInfectionLinkLocationMethodsMutagenesisMutateMutationOncoproteinsParentsPathogenicityPharmaceutical PreparationsPhasePlasmidsPoint MutationPopulations at RiskProtein ArrayProteinsReceptor CellResearchRiskS-nitro-N-acetylpenicillamineSmall Business Innovation Research GrantStainsSymptomsTreatment EfficacyVaccinesValidationVariantViralViral ProteinsViral Structural ProteinsVirusVirus Diseasesanticancer researchcancer cellcell determinationdensityimprovedinnovationinsightinterestmutantmutation screeningnext generation sequencingnovelparticlereceptorresponsetechnology developmenttumor progressionvaccine developmentviral transmission
项目摘要
This application is being submitted as an Administrative Supplement in response to the Notice of Special Interest (NOSI) identified as NOT-CA-20-042. Study of highly infectious diseases, especially those caused by viruses, poses unique biosafety challenges to the scientific research community. Rather than lose the insights this research can provide, common workarounds exist to reduce the risk of studying infectious virus by examining the proteins encoded by the virus in the absence of a fully infectious particle. This approach has been employed for many other viruses and has been proven effective in obtaining valuable data. However, viruses like SARS-CoV-2 mutate leading to many different strains and sequence variations, and it can be difficult to predict which mutations alter virus transmission, infection symptoms, or vaccine / treatment efficacy. Given that cancer patients constitute an at-risk population for Covid-19, this is even more complicated in the context of how cancer cells affect virus infection or how the virus affects cancer progression. Methods to examine virus protein mutations in a high throughput, systematic, and comprehensive (i.e. every mutation) manner are completely lacking. To help address this challenge, we propose to harness our innovative high throughput mutagenesis strategy to comprehensively generate plasmids of every possible point mutation of the SARS-CoV-2 S “spike” protein as the key viral recognition protein of the human entry receptor, towards accelerating functional studies and vaccine development. The resulting plasmid set is especially useful for functional assays to identify critical S protein variants, which is a vital area of current Covid-19 research. The S protein mutant plasmid set will be validated by expression of the variant plasmids in human cells and determination of which variants bind to different commercially available SARS-CoV-2 S protein antibodies. These results will be confirmed by immunofluorescence staining. While we envision these variants being employed by the cancer research community in their model systems, they can be used equally effectively by the SARS-CoV-2 research community in general. The proposed method significantly improves on random mutagenesis by error-prone PCR by avoiding its substantial mutational bias and ensuring exactly one mutation per plasmid for streamlined analysis. This strategy will be confirmed by next generation sequencing (NGS), comparing against error-prone PCR. Following successful validation assays for the S protein variant pool, we will generate mutant plasmid sets for three additional key proteins encoded by the SARS-CoV-2 genome. This Administrative Supplement is within the scope of our parent IMAT award, which is a technology development R21 mechanism, to generate all mutants of three key oncoproteins and link the expressed protein variants back to specific feature locations on a microarray. Upon successful completion of this Administrative Supplement, we intend to prepare a SBIR Phase I to sort each individual SARS-CoV-2 mutant plasmid into distinct wells of multiwell plates for additional availability to the Covid-19 research community.
本申请作为行政补充材料提交,以响应标识为 NOT-CA-20-042 的特别利益通知 (NOSI)。高传染性疾病的研究,特别是由病毒引起的疾病,给科学研究界带来了独特的生物安全挑战。存在常见的解决方法,通过在没有完全感染性颗粒的情况下检查病毒编码的蛋白质来降低研究感染性病毒的风险,而不是失去这项研究可以提供的见解。这种方法已用于许多其他病毒,并已被证明可以有效获取有价值的数据。然而,像 SARS-CoV-2 这样的病毒会发生突变,导致许多不同的毒株和序列变异,并且很难预测哪些突变会改变病毒传播、感染症状或疫苗/治疗效果。鉴于癌症患者构成了 Covid-19 的高危人群,考虑到癌细胞如何影响病毒感染或病毒如何影响癌症进展,情况变得更加复杂。完全缺乏高通量、系统、全面(即每一个突变)方式检测病毒蛋白突变的方法。为了帮助应对这一挑战,我们建议利用我们创新的高通量诱变策略,全面生成 SARS-CoV-2 S“刺突”蛋白的每种可能点突变的质粒,作为人类进入受体的关键病毒识别蛋白,以加速功能研究和疫苗开发。由此产生的质粒集对于识别关键 S 蛋白变体的功能测定特别有用,这是当前 Covid-19 研究的一个重要领域。 S 蛋白突变质粒组将通过在人类细胞中表达变体质粒并确定哪些变体与不同的市售 SARS-CoV-2 S 蛋白抗体结合来验证。这些结果将通过免疫荧光染色得到证实。虽然我们设想癌症研究界在其模型系统中使用这些变体,但一般 SARS-CoV-2 研究界也可以同样有效地使用它们。该方法通过避免其显着的突变偏差并确保每个质粒恰好有一个突变以进行简化分析,显着改进了易错 PCR 的随机诱变。该策略将通过下一代测序 (NGS) 与容易出错的 PCR 进行比较来证实。在成功验证 S 蛋白变体库后,我们将为 SARS-CoV-2 基因组编码的另外三种关键蛋白生成突变质粒集。本行政补充文件属于我们的母公司 IMAT 奖项的范围,该奖项是一种技术开发 R21 机制,用于生成三种关键癌蛋白的所有突变体,并将表达的蛋白变体连接回微阵列上的特定特征位置。成功完成本行政补充后,我们打算准备 SBIR 第一阶段,将每个单独的 SARS-CoV-2 突变体质粒分选到多孔板的不同孔中,以供 Covid-19 研究界使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Szatkowski Ozers其他文献
Mary Szatkowski Ozers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Szatkowski Ozers', 18)}}的其他基金
Development of GenomeBuild as a Universal Method to Synthesize Genomes
GenomeBuild 的开发作为合成基因组的通用方法
- 批准号:
10565058 - 财政年份:2023
- 资助金额:
$ 12.91万 - 项目类别:
SNAP-X: Development of a Mutagenesis Strategy and High Density Protein Array to Comprehensively Display Protein Variants
SNAP-X:开发诱变策略和高密度蛋白质阵列以全面展示蛋白质变体
- 批准号:
9923621 - 财政年份:2019
- 资助金额:
$ 12.91万 - 项目类别:
Aptamer-Based Detection of Cardiac Biomarker Glycosylation States Using APT-SNAP
使用 APT-SNAP 基于适体的心脏生物标志物糖基化状态检测
- 批准号:
8648358 - 财政年份:2014
- 资助金额:
$ 12.91万 - 项目类别:
Aptamer-Based Detection of Cardiac Biomarker Glycosylation States Using APT-SNAP
使用 APT-SNAP 基于适体的心脏生物标志物糖基化状态检测
- 批准号:
8914454 - 财政年份:2014
- 资助金额:
$ 12.91万 - 项目类别:
High Density Peptide Arrays for Cancer-Related Post-Translational Modifications
用于癌症相关翻译后修饰的高密度肽阵列
- 批准号:
8738628 - 财政年份:2013
- 资助金额:
$ 12.91万 - 项目类别:
High Density Peptide Arrays for Cancer-Related Post-Translational Modifications
用于癌症相关翻译后修饰的高密度肽阵列
- 批准号:
8625055 - 财政年份:2013
- 资助金额:
$ 12.91万 - 项目类别:
High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
- 批准号:
8222682 - 财政年份:2011
- 资助金额:
$ 12.91万 - 项目类别:
Screening of FoxA1-ER-DNA disruptors for development of breast cancer therapeutic
筛选 FoxA1-ER-DNA 干扰物用于开发乳腺癌治疗药物
- 批准号:
8200699 - 财政年份:2011
- 资助金额:
$ 12.91万 - 项目类别:
High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
- 批准号:
8336846 - 财政年份:2011
- 资助金额:
$ 12.91万 - 项目类别:
Screening of glucocorticoid receptor small-molecule regulators using cognate site
使用同源位点筛选糖皮质激素受体小分子调节剂
- 批准号:
7671718 - 财政年份:2009
- 资助金额:
$ 12.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 12.91万 - 项目类别:
Research Grant














{{item.name}}会员




