Decoding the metabolic requirements for vertebrate appendage regeneration
解码脊椎动物附肢再生的代谢需求
基本信息
- 批准号:10564466
- 负责人:
- 金额:$ 41.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAnimal ModelAnimalsArticulationBiological MetamorphosisCarbonCell ProliferationCellsCellular StructuresComplexConsumptionCoupledDataData SetDevelopmentEnzymesFosteringFutureGene ExpressionGenetic TranscriptionGlucoseGlucose-6-PhosphateGlycolysisGoalsGrowthHumanInjuryKnowledgeLimb structureLinkMetabolicMetabolismModelingNatural regenerationNucleotidesNutrientOrganismOutcomeOxidative PhosphorylationPathway interactionsPatternPentosephosphate PathwayPhospholipidsPopulationProcessProductionProliferatingRanaRegenerative MedicineSolid NeoplasmSourceSpecificityStructureTadpolesTailTestingTimeTissuesTumor Stem CellsWarburg EffectWorkXenopusaerobic glycolysisappendagecell growthcell typeembryonic stem cellexperimental studyfeedingglucose uptakehealinghuman tissueinsightlimb regenerationmetabolic profileprogramsregeneration modelregenerativesingle cell analysisstem cellssuccesstissue regenerationtranscription factor
项目摘要
SUMMARY
In contrast to humans, some animals are able to scarlessly heal and regrow lost appendages after major injury.
Appendage regeneration requires rapid and carefully regulated cell proliferation to replace lost tissue, an
inherently anabolic process. Despite the fundamental need for biosynthesis as part of regenerative healing, we
lack a mechanistic understanding of how injury is coupled to metabolic changes that enable cell proliferation
and growth. Re-creating the metabolic conditions that enable growth is critical to being able to foster
regenerative success in organisms where it is normally limited, such as ourselves. In this proposal, we
leverage two advantages to articulate the metabolic requirements for vertebrate appendage regeneration. The
first is a suite of mechanistic insights from other highly proliferative cell types, which rely on aerobic glycolysis
to convert glucose to glucose-6-phosphate, a versatile biosynthetic precursor for nucleotide and phospholipid
production. Our preliminary data suggest that this is a shared strategy in appendage regeneration. The second
is the unique context-specificity of appendage regeneration in Xenopus tadpoles, which is lost or gained on the
basis of nutrient source, developmental stage, and appendage type. This context specificity gives us the
opportunity to directly compare regenerative structures to their non-regenerative counterparts and to other non-
regenerative structures, thereby defining the specific features of the metabolic landscape that enhance or limit
regenerative outcome. In this proposal we will test the central hypothesis that regenerative success is dictated
by the ability of tissues to rapidly remodel their metabolic landscape and funnel nutrients toward biosynthesis.
We will test this hypothesis by first defining the metabolic paradigm that dominates in regenerative conditions:
glycolysis, pentose phosphate pathway, or oxidative phosphorylation. We will then identify shared and context-
specific features of metabolic reprogramming, contrasting the metabolic profile of regenerative structures and
non-regenerative structures at different developmental stages of the Xenopus tadpole. We conclude by
building a regulatory landscape of metabolism in regeneration, functionally testing candidate regulatory
transcription factors, and defining how metabolic gene expression is partitioned or integrated between cell
types.
总结
与人类相反,一些动物能够在严重受伤后无疤痕地愈合和再生失去的肢体。
再生需要快速和仔细调节细胞增殖,以取代失去的组织,
固有的合成代谢过程。尽管生物合成是再生愈合的一部分,
缺乏对损伤如何与使细胞增殖的代谢变化相结合的机械理解
和增长重新创造能够促进生长的代谢条件对于能够培养
在生物体中的再生成功通常是有限的,比如我们自己。在本提案中,我们
利用两个优点来阐明脊椎动物附肢再生的代谢要求。的
首先是从其他高度增殖的细胞类型中获得的一套机制性见解,这些细胞依赖于有氧糖酵解
将葡萄糖转化为葡萄糖-6-磷酸,这是核苷酸和磷脂的多功能生物合成前体
生产我们的初步数据表明,这是一个共同的策略,在附属物再生。第二
是非洲爪蟾蝌蚪附肢再生的独特的环境特异性,这是失去或获得的
营养来源、发育阶段和附肢类型的基础。这种上下文特异性给了我们
有机会直接比较再生结构,以他们的非再生同行和其他非-
再生结构,从而定义代谢景观的具体特征,
再生结果。在这个建议中,我们将测试中心假设,即再生的成功是由
通过组织快速重塑其代谢景观并将营养物质引向生物合成的能力。
我们将通过首先定义在再生条件下占主导地位的代谢范式来测试这一假设:
糖酵解、戊糖磷酸途径或氧化磷酸化。我们会找出共同的背景-
代谢重编程的具体特征,对比再生结构的代谢概况,
非洲爪蟾蝌蚪不同发育阶段的非再生结构。最后,我们得出以下结论:
建立再生中代谢的调控景观,功能测试候选调控
转录因子,并定义代谢基因表达如何在细胞间分配或整合
类型
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Elizabeth Wills其他文献
Andrea Elizabeth Wills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Elizabeth Wills', 18)}}的其他基金
Defining the mechanism of chromatin accessibility modifications in vertebrate appendage regeneration
定义脊椎动物附肢再生中染色质可及性修饰的机制
- 批准号:
9461104 - 财政年份:2017
- 资助金额:
$ 41.93万 - 项目类别:
Transcriptional regulatory mechanisms of vertebrate regeneration
脊椎动物再生的转录调控机制
- 批准号:
10208975 - 财政年份:2017
- 资助金额:
$ 41.93万 - 项目类别:
Transcriptional regulatory mechanisms of vertebrate regeneration
脊椎动物再生的转录调控机制
- 批准号:
10594191 - 财政年份:2017
- 资助金额:
$ 41.93万 - 项目类别:
Transcriptional regulation of liver specification in Xenopus tropicalis
热带爪蟾肝脏规格的转录调控
- 批准号:
8292133 - 财政年份:2010
- 资助金额:
$ 41.93万 - 项目类别:
Transcriptional regulation of liver specification in Xenopus tropicalis
热带爪蟾肝脏规格的转录调控
- 批准号:
8119663 - 财政年份:2010
- 资助金额:
$ 41.93万 - 项目类别:
Investigating the transcriptional regulation of liver specification in Xenopus tr
研究非洲爪蟾肝脏规格的转录调控
- 批准号:
7997839 - 财政年份:2010
- 资助金额:
$ 41.93万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists