Transcriptional regulatory mechanisms of vertebrate regeneration
脊椎动物再生的转录调控机制
基本信息
- 批准号:10208975
- 负责人:
- 金额:$ 33.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAdultAmputationAnimal ModelAnimalsBinding SitesBiologicalBiologyCRISPR/Cas technologyCell CountCellsChromatinCompetenceCoupledDendritesDevelopmentEmbryoEnhancersEventFOXO1A geneFailureGene ActivationGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomic SegmentGoalsHourHumanInjuryIntrinsic factorKnock-outLeadMediatingMolecularMolecular ConformationMorphogenesisMotorMutagenesisNatural regenerationNeuraxisNeuronsNucleic Acid Regulatory SequencesOutcomePathway interactionsPatientsPopulationRanaRecovery of FunctionRegenerative researchRegenerative responseRegulationRegulator GenesRegulatory ElementRoleSensorySignal TransductionSpinal CordSpinal cord injurySpinal cord injury patientsSystemSystems AnalysisTadpolesTailTestingTissuesUp-RegulationVertebratesWorkXenopusaxon regenerationbasecentral nervous system injurychromatin remodelingextracellularfunctional genomicsgenome-wideimprovedinsightloss of functionmature animalmutantnerve stem cellneurogenesisneuronal growthregenerativerelating to nervous systemrepairedresponsesevere injuryspinal cord regenerationtargeted treatmenttherapeutically effectivetissue regenerationtooltranscription factorwound
项目摘要
Why do humans fail to regenerate injured central nervous system tissues, when other vertebrates do so
readily? In this proposal we take aim at this fundamental question by defining the cell-intrinsic mechanisms that
enable spinal cord regeneration in the frog Xenopus tropicalis. Tadpoles of this species are able to regenerate
spinal cord tissues and motor function following injury, while adult animals cannot. We will exploit this temporal
competence to regenerate in order to understand how regeneration normally proceeds as well as why it might
fail. This distinctive biology coupled with the deep set of available tools for functional and genomic analysis
makes X. tropicalis a uniquely powerful system for analysis of regeneration. A central goal of spinal cord
regeneration research is to identify the cell-intrinsic factors that enable neurogenesis and axon regeneration.
Our preliminary analyses in this system have uncovered new insights into these factors and the gene
regulatory mechanisms that may form the basis for regenerative competence. First, we have found that tens of
thousands of genomic regions shift rapidly to an accessible chromatin conformation, and then unexpectedly to
an inaccessible conformation, within the first few hours of regeneration. These rearrangements take place in
regions that are heavily enriched for binding sites of FoxO1 and Ascl1, factors that have pioneer activity and
critical roles in neural progenitor function. Second, genes specific to differentiated neurons are expressed
within hours of amputation, and are surprisingly independent of neural induction and neurogenesis gene
activation. Based on these observations, we hypothesize that regenerative competence relies on three
features: 1) a robust neural progenitor population, 2) a rapid burst of chromatin remodeling in neural progenitor
cells carried out by Ascl1, FoxO1, and other pioneer factors, and 3) activation of neuronal specific genes that
allow axonogenesis and neuronal growth in existing differentiated neurons. In this proposal, we will test these
predictions by identifying the transcription factors that mediate chromatin remodeling in isolated neural
progenitors. We will functionally test the role of Ascl1 and FoxO1 in regeneration using loss-of-function mutants
for these factors. We will then identify whether upregulation of axonogenesis genes in regenerating tadpoles
represents neuronal repair or neurogenesis, and interrogate whether these genes are upregulated using
embryonic gene regulatory elements or regeneration-specific regulatory elements. Finally, we will identify
whether regeneration in adult frogs fails due to lack of neural progenitors, failure to initiate chromatin
remodeling, or failure to upregulate neuronal morphogenesis genes. By systematically characterizing the
events that define regeneration competence in Xenopus, we expect to identify molecular mechanisms that can
be targeted for more effective therapeutics in human spinal cord injury patients.
为什么人类不能再生受损的中枢神经系统组织,而其他脊椎动物可以
容易?在这个建议中,我们通过定义细胞内在机制来瞄准这个基本问题,
使热带爪蟾的脊髓得以再生。这个物种的蝌蚪能够再生
脊髓组织和运动功能损伤后,而成年动物不能。我们会利用这个时间
再生能力,以了解再生通常如何进行,以及为什么它可能
失败这种独特的生物学加上功能和基因组分析的深层可用工具集
使X。tropicalis是一个独特的强大的再生分析系统。脊髓的中心目标
再生研究的目的是确定使神经发生和轴突再生的细胞内在因子。
我们对该系统的初步分析揭示了对这些因素和基因的新见解。
可能形成再生能力基础的调节机制。首先,我们发现,
数以千计的基因组区域迅速转变为可接近的染色质构象,然后出乎意料地
在再生的最初几个小时内,一种难以接近的构象。这些重组发生在
高度富集FoxO1和Ascl1结合位点的区域,具有先锋活性的因子,
在神经祖细胞功能中的重要作用。第二,表达分化神经元特异性基因
并且令人惊讶地独立于神经诱导和神经发生基因
activation.基于这些观察结果,我们假设再生能力依赖于三个因素,
特征:1)强大的神经祖细胞群体,2)神经祖细胞中染色质重塑的快速爆发
由Ascl1、FoxO1和其他先驱因子进行的细胞,和3)激活神经元特异性基因,
允许轴突发生和现有分化神经元中的神经元生长。在本提案中,我们将测试这些
通过鉴定在分离的神经细胞中介导染色质重塑的转录因子来预测,
祖先我们将使用功能缺失突变体功能性地测试Ascl1和FoxO1在再生中的作用
对于这些因素。然后我们将确定是否上调轴突发生基因在再生蝌蚪
代表神经元修复或神经发生,并询问这些基因是否被上调,
胚胎基因调控元件或再生特异性调控元件。最后,我们将确定
成年青蛙的再生失败是否是由于缺乏神经祖细胞,未能启动染色质
重塑或不能上调神经元形态发生基因。通过系统地描述
事件,定义再生能力的爪蟾,我们希望确定分子机制,
成为人类脊髓损伤患者更有效治疗的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Elizabeth Wills其他文献
Andrea Elizabeth Wills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Elizabeth Wills', 18)}}的其他基金
Decoding the metabolic requirements for vertebrate appendage regeneration
解码脊椎动物附肢再生的代谢需求
- 批准号:
10564466 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Defining the mechanism of chromatin accessibility modifications in vertebrate appendage regeneration
定义脊椎动物附肢再生中染色质可及性修饰的机制
- 批准号:
9461104 - 财政年份:2017
- 资助金额:
$ 33.42万 - 项目类别:
Transcriptional regulatory mechanisms of vertebrate regeneration
脊椎动物再生的转录调控机制
- 批准号:
10594191 - 财政年份:2017
- 资助金额:
$ 33.42万 - 项目类别:
Transcriptional regulation of liver specification in Xenopus tropicalis
热带爪蟾肝脏规格的转录调控
- 批准号:
8292133 - 财政年份:2010
- 资助金额:
$ 33.42万 - 项目类别:
Transcriptional regulation of liver specification in Xenopus tropicalis
热带爪蟾肝脏规格的转录调控
- 批准号:
8119663 - 财政年份:2010
- 资助金额:
$ 33.42万 - 项目类别:
Investigating the transcriptional regulation of liver specification in Xenopus tr
研究非洲爪蟾肝脏规格的转录调控
- 批准号:
7997839 - 财政年份:2010
- 资助金额:
$ 33.42万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 33.42万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 33.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)