Mechanisms of anti-phage defenses and their mobilization in staphylococci

葡萄球菌中的抗噬菌体防御机制及其动员

基本信息

  • 批准号:
    10563748
  • 负责人:
  • 金额:
    $ 49.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-10 至 2027-10-31
  • 项目状态:
    未结题

项目摘要

Project Summary Staphylococci are ubiquitous bacterial residents of human skin and major causes of antibiotic-resistant infections. Of the ~40 skin-associated species, S. aureus and S. epidermidis have the greatest pathogenic potential: S. aureus is the leading cause of skin and soft tissue infections and S. epidermidis is the most common cause of infections associated with indwelling medical devices. Compounding the problem, S. epidermidis strains harbor a reservoir of genes that enhance fitness/virulence (e.g. genes that encode toxins and antibiotic resistance) which can be horizontally transferred to S. aureus. In light of these facts, a thorough understanding of the mechanisms that regulate horizontal gene transfer between these species would be an invaluable asset in neutralizing or stemming the flow of these factors at the source. In this context, staphylococcal phages (i.e. viruses) and the immune systems targeted against them have profound impacts on staphylococcal survival and pathogenesis. For instance, lysogenic phages can enhance pathogenic potential by transferring pathogenicity islands from one strain to another and carrying virulence factors that integrate along with the phage genome into the host. In contrast, strictly lytic phages can kill the bacterial host within minutes and are being used as alternative therapeutics to combat antibiotic-resistant infections. Bacterial immune systems target lytic and lysogenic phages alike, and can therefore counter these opposing effects. As it stands, we are only just beginning to understand these dynamics and identify the specific immune systems that staphylococci employ, and alarmingly, almost nothing is known about how these systems are horizontally spread. These knowledge gaps continue to undermine our ability to implement effective therapeutics and improve overall healthcare outcomes. The long-term objective of this R01 project is to gain a comprehensive understanding of the anti-phage immune systems in staphylococci and the pathways by which they spread. Towards this goal, this research uses S. epidermidis and a collection of diverse phages as model organisms to achieve three specific aims: Aim 1 will identify and characterize new anti-phage defenses in a suite of S. epidermidis clinical isolates using genetics, biochemical, and bioinformatics approaches. Aim 2 will determine the major genetic and environmental factors that drive mobilization of these defenses using molecular and genetic approaches. Aim 3 seeks to determine the global impacts of the molecular machinery that mediate defense mobilization using high-throughput genetics approaches. By revealing new insights into mechanisms of anti-phage defenses in staphylococci and the pathways by which they spread, the proposed work will enable the development of more effective approaches for not only combatting the spread of resistance to antibiotics but also saving the burgeoning phage therapeutics from a similar fate. This work will also open up exciting new research directions in understanding staphylococci and other organisms that harbor similar systems.
项目摘要 葡萄球菌是人体皮肤中普遍存在的细菌,也是产生抗生素耐药性的主要原因 感染。在约40种与皮肤有关的物种中,金黄色葡萄球菌和表皮葡萄球菌的致病性最强。 潜在的:金黄色葡萄球菌是皮肤和软组织感染的主要原因,表皮葡萄球菌是最常见的 与留置医疗器械相关的感染原因。使问题复杂化的是,表皮葡萄球菌菌株 存放增强适合性/毒性的基因(例如编码毒素和抗生素的基因 抗性),可水平转移给金黄色葡萄球菌。鉴于这些事实,彻底了解 控制这些物种之间水平基因转移的机制将是一笔无价的财富 在源头上中和或阻止这些因素的流动。在这方面,葡萄球菌噬菌体(即 病毒)和针对它们的免疫系统对葡萄球菌的生存和 发病机制。例如,溶原噬菌体可以通过转移致病性来增强致病潜能。 从一个菌株到另一个菌株的岛屿,携带的毒力因子与噬菌体基因组一起整合到 主持人。相比之下,严格溶解的噬菌体可以在几分钟内杀死细菌宿主,并被用作 对抗抗药性感染的替代疗法。细菌免疫系统靶向溶血素和 溶原噬菌体相似,因此可以对抗这些相反的作用。就目前情况而言,我们才刚刚开始 为了了解这些动态并确定葡萄球菌使用的特定免疫系统,以及 令人担忧的是,关于这些系统是如何水平传播的,人们几乎一无所知。这些知识差距 继续削弱我们实施有效疗法和改善整体医疗结果的能力。 R01项目的长期目标是全面了解抗噬菌体免疫 葡萄球菌中的系统及其传播途径。为了实现这一目标,本研究采用了S. 表皮和一系列不同的噬菌体作为模式生物,以实现三个具体目标:目标1将 利用遗传学在一组表皮葡萄球菌临床分离株中识别和表征新的抗噬菌体防御系统, 生物化学和生物信息学的方法。目标2将确定主要的遗传和环境因素 使用分子和遗传方法来推动这些防御系统的动员。目标3试图确定 利用高通量遗传学调节国防动员的分子机制的全球影响 接近了。通过揭示葡萄球菌抗噬菌体防御机制的新见解和 关于它们传播的途径,拟议的工作将使制定更有效的办法成为可能。 不仅是为了对抗抗生素耐药性的传播,也是为了拯救蓬勃发展的噬菌体疗法 脱离了类似的命运。这项工作还将在了解葡萄球菌方面开辟令人兴奋的新研究方向 以及其他拥有类似系统的生物体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asma HATOUM其他文献

Asma HATOUM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The effects of antibiotics to the transfer frequency of the antibiotic resistance genes and the evolution of high-level resistance.
抗生素对抗生素抗性基因转移频率和高水平抗性进化的影响。
  • 批准号:
    22K05790
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
  • 批准号:
    NE/N019687/2
  • 财政年份:
    2019
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Research Grant
Combating Antibiotic Resistance to Aminoglycoside Antibiotics through Chemical Synthesis
通过化学合成对抗氨基糖苷类抗生素的耐药性
  • 批准号:
    392481159
  • 财政年份:
    2017
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Research Fellowships
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
  • 批准号:
    NE/N019687/1
  • 财政年份:
    2016
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Research Grant
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
  • 批准号:
    NE/N019857/1
  • 财政年份:
    2016
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
  • 批准号:
    366555
  • 财政年份:
    2016
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Operating Grants
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
  • 批准号:
    NE/N019717/1
  • 财政年份:
    2016
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
  • 批准号:
    361307
  • 财政年份:
    2016
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Operating Grants
RAPID: COLLABORATIVE RESEARCH: Fate and Transport of Antibiotics and Antibiotic Resistance Genes During Historic Colorado Flood
快速:合作研究:历史性科罗拉多洪水期间抗生素和抗生素抗性基因的命运和运输
  • 批准号:
    1402635
  • 财政年份:
    2013
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Standard Grant
Contamination status of antibiotics and antibiotic resistance genes (ARGs) in tropical Asian aquatic environments with artificial and natural disturbance
人工和自然干扰下亚洲热带水生环境中抗生素和抗生素抗性基因(ARG)的污染状况
  • 批准号:
    25257402
  • 财政年份:
    2013
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了