Algorithmic approaches to systems biology, data integration, and evolution

系统生物学、数据集成和进化的算法方法

基本信息

  • 批准号:
    10927048
  • 负责人:
  • 金额:
    $ 141.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Przytycka's group continued to develop and apply computational methods that utilize and integrate large data sets with a focus on gene regulation and diseases. I continued the research on mutation signatures in cancer. Most of the mutations present in cancer genomes are harmless passenger mutations. It has been increasingly appreciated that analyses of the patterns of these mutations can provide useful information regarding mutational processes acting on cancer genomes. We leverage the concept mutational signatures to study the relationship of environmental factors, such as smoking and cellular processes in specific tissues. Integrating gene expression and mutational signatures, we examined the relationship of the exposure to smoking and other mutagens with biological processes in healthy tissues, aiming to understand how the exposure to these mutagens impact functioning of cells and tissues. Our results demonstrated that mutational signatures can be utilized to study the impact of mutagenic environmental factors on molecular pathways and cellular compositions of tissues by allowing a quantification of the strength of these mutagens (reported in the paper Mutational Signatures as Sensors of Environmental Exposures: Analysis of Smoking-Induced Lung Tissue Remodeling 1) To gain a more detailed knowledge about the relationships between mutagenic processes and cellular-level changes we developed a network-based approach, GenSigNet, that captures the relations between gene expression and signatures. The GeneSigNet method allows to construct an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes. Applying GeneSigNet to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GeneSigNet also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GeneSigNet also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway. GeneSigNet provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The results of these studies are reported in the paper Influence network model uncovers relations between biological processes and mutational signature published in Genome Medicine 2. Focusing on cancer driver mutations, we published in journal Trends in Medicine a review (Cancer driver mutations: predictions and reality) that summarize recent efforts to identify driver mutations in cancer and annotate their effects. We underline the success of computational methods to predict driver mutations in finding novel cancer biomarkers 3. This year we also initiated research related to tumor evolution is particular interest in the role of the environment including immune system. Our preliminary studies are have reported in BioRxiv paper Exploring tumor-normal cross-talk with TranNet: role of the environment in tumor progression. Focusing on gene expression evolution, we developed EvoGeneX, a computationally efficient implementation of the OU-based method that models within-species variation. Using extensive simulations, we show that modeling within-species variations and appropriate selection of species improve the performance of the model. Further, to facilitate a comparative analysis of expression evolution, we introduced a formal measure of evolutionary expression divergence for a group of genes using the rate and the asymptotic level of divergence. With these tools in hand, we performed the first-ever analysis of the evolution of gene expression across different body-parts, species, and sexes. (Stochastic Modeling of Gene Expression Evolution Uncovers Tissue- and Sex-Specific Properties of Expression Evolution in the Drosophila Genus published in Journal of Computational Biology. ) We now apply the approach developed in this paper to cancer evolution. My group also participates in the international Fly Cell Atlas Consortium that provides a resource for the Drosophila community to study genetic perturbations and diseases at single-cell resolution. The single-cell atlas of the entire adult includes 580,000 cells and more than 250 annotated cell types. Following the flagship paper of the consortium has been published previous year in Science we contributed to the eLife paper Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes 5. In addition together with Brian Oliver's group at NIDDK, and my former group member Soumitra Pal utilize Fly Cell Atlas data to study of sexual dimorphism in fly. Also with my former group member Yijie Wang we continued to work on developing new method for construction of regulatory networks. The inference of Gene Regulatory Networks (GRNs) is one of the key challenges in systems biology. Leading algorithms utilize, in addition to gene expression, prior knowledge such as Transcription Factor (TF) DNA binding motifs or results of TF binding experiments. However, such prior knowledge is typically incomplete, therefore, integrating it with gene expression to infer GRNs remains difficult. To address this challenge, we introduce NetREX-CFRegulatory Network Reconstruction using EXpression and Collaborative Filteringa GRN reconstruction approach that brings together Collaborative Filtering to address the incompleteness of the prior knowledge and a biologically justified model of gene expression (sparse Network Component Analysis based model). 6. We also have a long lasting collaborative research on non B-DNA structure with David Levens 7. In addition Jan Hoinka in the group continues to maintain previously developed Aptamer analysis software 8.
Przytycka的团队继续开发和应用计算方法,利用和整合大型数据集,重点关注基因调控和疾病。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis.
Arg-Walker:通过人群基因组学分析来推论减数分裂重组热点的单个特定优势。
  • DOI:
    10.1186/1471-2164-16-s12-s1
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Chen H;Yang P;Guo J;Kwoh CK;Przytycka TM;Zheng J
  • 通讯作者:
    Zheng J
Subpopulation Detection and Their Comparative Analysis across Single-Cell Experiments with scPopCorn.
  • DOI:
    10.1016/j.cels.2019.05.007
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Yijie Wang;Jan Hoinka;T. Przytycka
  • 通讯作者:
    Yijie Wang;Jan Hoinka;T. Przytycka
Systems-biology dissection of eukaryotic cell growth.
  • DOI:
    10.1186/1741-7007-8-62
  • 发表时间:
    2010-05-24
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Przytycka TM;Andrews J
  • 通讯作者:
    Andrews J
LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.
  • DOI:
    10.1186/s12920-018-0351-0
  • 发表时间:
    2018-04-20
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Guo J;Chen H;Yang P;Lee YT;Wu M;Przytycka TM;Kwoh CK;Zheng J
  • 通讯作者:
    Zheng J
Unique cost dynamics elucidate the role of frameshifting errors in promoting translational robustness.
独特的成本动态阐明了移码错误在促进翻译鲁棒性方面的作用。
  • DOI:
    10.1093/gbe/evq049
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Warnecke,Tobias;Huang,Yang;Przytycka,TeresaM;Hurst,LaurenceD
  • 通讯作者:
    Hurst,LaurenceD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teresa Przytycka其他文献

Teresa Przytycka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teresa Przytycka', 18)}}的其他基金

Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
  • 批准号:
    8943247
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
  • 批准号:
    8558125
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
  • 批准号:
    7969252
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
  • 批准号:
    8344970
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Algorithmic approaches to systems biology, data integration, and evolution
系统生物学、数据集成和进化的算法方法
  • 批准号:
    9555743
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Algorithmic approaches to systems biology, data integration, and evolution
系统生物学、数据集成和进化的算法方法
  • 批准号:
    10018681
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
  • 批准号:
    8149615
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
  • 批准号:
    7735092
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Algorithmic approaches to systems biology, data integration, and evolution
系统生物学、数据集成和进化的算法方法
  • 批准号:
    10688922
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:
Algorithmic approaches to systems biology, data integration, and evolution
系统生物学、数据集成和进化的算法方法
  • 批准号:
    10268080
  • 财政年份:
  • 资助金额:
    $ 141.1万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 141.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了