Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
基本信息
- 批准号:10951308
- 负责人:
- 金额:$ 27.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Medical errors are the third leading cause of death in the US at a cost of $20 billion annually.
Surgical complications account for a third of these deaths and cost. Surgical performance
directly impacts patient outcomes. Prostate cancer, the most common cancer in men, is treated
with surgery (robot-assisted radical prostatectomy (RARP)) that can lead to impotence,
incontinence, and even death. Reliable means of objectively assessing technique are required.
In this project we will focus on assessing surgeon suturing skills during RARP through virtual
reality (VR) simulation. Suturing is a common skill in many types of surgeries, can be tracked
with performance metrics, and has been correlated with patient outcomes after RARP.
In this proposal we seek to first determine the critical sub-step maneuvers of suturing and the
technical skills necessary to achieve them successfully (Aim 1a). Further, we intend to develop
an automated skills assessment pipeline through the analysis of raw kinematic data (Aim 1b),
video (Aim 2b), and both kinematic/video (Aim 2c), from VR simulation performance by
innovative machine learning strategies and deep-learning-based computer vision.
The primary differentiator of the proposed work is determining how well granular sub-step
maneuvers in suturing are performed. Surgeons participating in this study will not only provide
data through their VR simulation performance, but will also contribute real patient data from the
RARP to establish the relationship between surgeon skill, patient factors, and surgical
outcomes. Statistical modeling will measure the differential impact of surgeon skill and patient
factors to patient outcomes (Aim 3). We hypothesize that innovative application of machine
learning algorithms can accurately assess surgeon technical skills, and can further anticipate
likelihood of relevant clinical outcomes.
The proposed work will enable scalable and actionable feedback in VR, empowering surgeons
with valuable knowledge to minimize surgical risk in live surgery.
摘要
医疗差错是美国第三大死亡原因,每年造成200亿美元的损失。
手术并发症占这些死亡和费用的三分之一。外科手术表现
直接影响患者的预后。前列腺癌是男性最常见的癌症,
手术(机器人辅助根治性乳房切除术(RARP))可能导致阳痿,
失禁甚至死亡需要客观评估技术的可靠手段。
在本项目中,我们将重点评估外科医生在RARP期间通过虚拟
现实(VR)模拟。缝合是许多类型手术中的常见技能,可以跟踪
与性能指标相关,并与RARP后的患者结局相关。
在这个建议中,我们试图首先确定临界子步骤机动的飞行器和
成功实现这些目标所需的技术技能(目标1a)。此外,我们还打算开发
通过分析原始运动学数据建立自动化技能评估管道(目标1b),
视频(Aim 2b)和运动学/视频(Aim 2c),来自VR模拟性能,
创新的机器学习策略和基于深度学习的计算机视觉。
所提出的工作的主要区别是确定如何以及粒度子步骤
在空中进行机动。参与这项研究的外科医生不仅将提供
通过他们的VR模拟性能提供数据,但也将提供来自
RARP旨在确定外科医生技能、患者因素和手术
结果。统计建模将测量外科医生技能和患者
患者结局(目标3)。我们假设机器的创新应用
学习算法可以准确地评估外科医生的技术技能,并且可以进一步预测
相关临床结果的可能性。
拟议的工作将使VR中的可扩展和可操作的反馈成为可能,
具有宝贵的知识,以最大限度地减少手术风险,在现场手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Hung其他文献
Andrew Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Hung', 18)}}的其他基金
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10594534 - 财政年份:2021
- 资助金额:
$ 27.22万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10379385 - 财政年份:2021
- 资助金额:
$ 27.22万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10208178 - 财政年份:2021
- 资助金额:
$ 27.22万 - 项目类别:
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
- 批准号:
9982955 - 财政年份:2018
- 资助金额:
$ 27.22万 - 项目类别:
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
- 批准号:
9767765 - 财政年份:2018
- 资助金额:
$ 27.22万 - 项目类别:
相似国自然基金
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: EAGER: Technology-Assisted Accessible Clothing: Soft Robotic Interaction Technologies and an Assessment Framework for Clothing Accessibility
合作研究:EAGER:技术辅助的无障碍服装:软机器人交互技术和服装无障碍评估框架
- 批准号:
2324343 - 财政年份:2023
- 资助金额:
$ 27.22万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Technology-Assisted Accessible Clothing: Soft Robotic Interaction Technologies and an Assessment Framework for Clothing Accessibility
合作研究:EAGER:技术辅助的无障碍服装:软机器人交互技术和服装无障碍评估框架
- 批准号:
2324342 - 财政年份:2023
- 资助金额:
$ 27.22万 - 项目类别:
Standard Grant
Robotic assessment of sensory, motor, and cognitive neurologic impairment in concussed youth athletes.
对脑震荡青年运动员的感觉、运动和认知神经损伤进行机器人评估。
- 批准号:
486127 - 财政年份:2022
- 资助金额:
$ 27.22万 - 项目类别:
Studentship Programs
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10594534 - 财政年份:2021
- 资助金额:
$ 27.22万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10379385 - 财政年份:2021
- 资助金额:
$ 27.22万 - 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
- 批准号:
10208178 - 财政年份:2021
- 资助金额:
$ 27.22万 - 项目类别:
STTR Phase I: Computerized System for Detection, Assessment, and Visualization of Intraoperative Bleeding During Robotic and Laparoscopic Surgery
STTR 第一阶段:用于机器人和腹腔镜手术期间术中出血检测、评估和可视化的计算机化系统
- 批准号:
1953822 - 财政年份:2020
- 资助金额:
$ 27.22万 - 项目类别:
Standard Grant
An ultrasonic measurement system and its robotic deployment into vessels for the combined assessment of debris condition and water leakage
超声波测量系统及其机器人部署到容器中,用于综合评估碎片状况和漏水
- 批准号:
EP/N017641/1 - 财政年份:2016
- 资助金额:
$ 27.22万 - 项目类别:
Research Grant
Assessment of an Experimental Robotic Assisted Transfer Device
实验机器人辅助转移装置的评估
- 批准号:
8782827 - 财政年份:2015
- 资助金额:
$ 27.22万 - 项目类别:
A Robotic Platform for Modelling, Assessment and Rehabilitation of Movement Disorders
用于运动障碍建模、评估和康复的机器人平台
- 批准号:
RTI-2016-00190 - 财政年份:2015
- 资助金额:
$ 27.22万 - 项目类别:
Research Tools and Instruments