Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms

利用深度学习算法自动评估机器人缝合

基本信息

  • 批准号:
    10208178
  • 负责人:
  • 金额:
    $ 69.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Medical errors are the third leading cause of death in the US at a cost of $20 billion annually. Surgical complications account for a third of these deaths and cost. Surgical performance directly impacts patient outcomes. Prostate cancer, the most common cancer in men, is treated with surgery (robot-assisted radical prostatectomy (RARP)) that can lead to impotence, incontinence, and even death. Reliable means of objectively assessing technique are required. In this project we will focus on assessing surgeon suturing skills during RARP through virtual reality (VR) simulation. Suturing is a common skill in many types of surgeries, can be tracked with performance metrics, and has been correlated with patient outcomes after RARP. In this proposal we seek to first determine the critical sub-step maneuvers of suturing and the technical skills necessary to achieve them successfully (Aim 1a). Further, we intend to develop an automated skills assessment pipeline through the analysis of raw kinematic data (Aim 1b), video (Aim 2b), and both kinematic/video (Aim 2c), from VR simulation performance by innovative machine learning strategies and deep-learning-based computer vision. The primary differentiator of the proposed work is determining how well granular sub-step maneuvers in suturing are performed. Surgeons participating in this study will not only provide data through their VR simulation performance, but will also contribute real patient data from the RARP to establish the relationship between surgeon skill, patient factors, and surgical outcomes. Statistical modeling will measure the differential impact of surgeon skill and patient factors to patient outcomes (Aim 3). We hypothesize that innovative application of machine learning algorithms can accurately assess surgeon technical skills, and can further anticipate likelihood of relevant clinical outcomes. The proposed work will enable scalable and actionable feedback in VR, empowering surgeons with valuable knowledge to minimize surgical risk in live surgery.
摘要 医疗差错是美国第三大死因,每年造成200亿美元的损失。 手术并发症占死亡人数和费用的三分之一。外科手术表现 直接影响患者的预后。前列腺癌是男性最常见的癌症,接受治疗 通过可能导致阳萎的手术(机器人辅助前列腺癌根治术(RARP)), 大小便失禁甚至死亡。需要可靠的客观评估技术手段。 在这个项目中,我们将重点评估外科医生在RARP期间的缝合技能通过虚拟 现实(VR)模拟。缝合是许多类型的手术中的一种常见技能,可以被追踪 与绩效指标相关,并与RARP后的患者结果相关。 在这项建议中,我们寻求首先确定关键的子步缝合操作和 成功实现这些目标所需的技术技能(目标1a)。此外,我们打算发展 通过分析原始运动学数据的自动化技能评估渠道(目标1b), 视频(目标2b)和运动学/视频(目标2c),来自VR模拟性能 创新的机器学习策略和基于深度学习的计算机视觉。 建议工作的主要区别是确定细粒度的子步骤有多好 进行缝合时的操作。参与这项研究的外科医生不仅将提供 数据通过他们的VR模拟性能,但也将贡献来自 RARP以建立外科医生技能、患者因素和外科手术之间的关系 结果。统计建模将衡量外科医生技能和患者的不同影响 影响患者预后的因素(目标3)。我们假设机器的创新应用 学习算法可以准确评估外科医生的技术技能,并可以进一步预测 相关临床结果的可能性。 拟议的工作将在VR中实现可扩展和可操作的反馈,使外科医生能够 具有将活体手术中的手术风险降至最低的宝贵知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Hung其他文献

Andrew Hung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Hung', 18)}}的其他基金

Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10951308
  • 财政年份:
    2021
  • 资助金额:
    $ 69.34万
  • 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10594534
  • 财政年份:
    2021
  • 资助金额:
    $ 69.34万
  • 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10379385
  • 财政年份:
    2021
  • 资助金额:
    $ 69.34万
  • 项目类别:
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
  • 批准号:
    9982955
  • 财政年份:
    2018
  • 资助金额:
    $ 69.34万
  • 项目类别:
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
  • 批准号:
    9767765
  • 财政年份:
    2018
  • 资助金额:
    $ 69.34万
  • 项目类别:

相似海外基金

The potential of using student-conducted ethnographic research as a formative assessment tool in CLIL and EMI courses
在 CLIL 和 EMI 课程中使用学生进行的民族志研究作为形成性评估工具的潜力
  • 批准号:
    24K04145
  • 财政年份:
    2024
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing a new risk and needs assessment tool for young people who have displayed harmful sexual behaviour
为表现出有害性行为的年轻人开发新的风险和需求评估工具
  • 批准号:
    2886506
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Studentship
I-Corps: Remote monitoring and assessment tool for spinal care patients
I-Corps:脊柱护理患者的远程监测和评估工具
  • 批准号:
    2321802
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Standard Grant
SBIR Phase I: PenEEG: An Objective Assessment Tool for Concussion and Recovery Management
SBIR 第一阶段:PenEEG:脑震荡和恢复管理的客观评估工具
  • 批准号:
    2304353
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Standard Grant
Development of the Dementia-Friendly Environmental Assessment Tool for Japanese care and nursing homes
为日本护理院和疗养院开发痴呆症友好型环境评估工具
  • 批准号:
    22KJ0474
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
  • 批准号:
    10721762
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
I-Corps: Sensor-based frailty assessment tool using a smart watch
I-Corps:使用智能手表的基于传感器的虚弱评估工具
  • 批准号:
    2311611
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Standard Grant
DEVELOPMENT OF DIABETES HEALTH LITERACY ASSESSMENT TOOL TO SUPPORT HEALTHCARE PROVIDERS DURING VIRTUAL VISIT
开发糖尿病健康素养评估工具,在虚拟访问期间为医疗保健提供者提供支持
  • 批准号:
    495439
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
Development of a diagnostic assessment tool and training app for dyscaliculia to apply in medical treatment and education.
开发计算障碍诊断评估工具和培训应用程序,以应用于医疗和教育。
  • 批准号:
    23K02570
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Injury prevention for rugby-related concussion: development of a comprehensive tackle assessment tool
橄榄球相关脑震荡的伤害预防:开发综合铲球评估工具
  • 批准号:
    23K16737
  • 财政年份:
    2023
  • 资助金额:
    $ 69.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了