An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
基本信息
- 批准号:10910349
- 负责人:
- 金额:$ 18.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAgreementAmino Acid MotifsAmino AcidsAntibodiesAutoimmune DiseasesAutoimmunityB-LymphocytesBase SequenceBig DataBindingBiophysicsCharacteristicsChargeClassificationClinicalCollectionComplexComputer ModelsCreativenessData SetDependenceDiagnosisDiagnosticDiagnostic testsDiseaseEnsureEntropyFosteringGene FrequencyGenesGoalsHealthHumanImmuneImmunologyIndividualInfectionInfluenza vaccinationIntuitionLearningLettersMachine LearningMalignant NeoplasmsMathematicsMeasurementMeasuresMedicineMethodsMissionModelingOutcomePatternPerformancePersonsPhysicsPlayPopulation HeterogeneityPrivatizationPropertyPublic HealthReadingReportingResearchRoleSample SizeSamplingSampling ErrorsSigns and SymptomsSpeedSystemT-Cell ReceptorT-Cell Receptor GenesT-LymphocyteTestingUnited States National Institutes of HealthVaccinationVirus DiseasesWorkbiophysical propertiesclinical diagnosticscomputerized toolsdiagnostic accuracyhuman diseaseimmunological diversityimprovedinnovationmachine learning methodmultidisciplinarymultilevel analysisnovelnovel strategiestool
项目摘要
Immune-repertoire sequence, which consists of an individual's millions of unique antibody and T-cell receptor
(TCR) genes, encodes a dynamic and highly personalized record of an individual's state of health. Our long-
term goal is to develop the computational models and tools necessary to read this record, to one day be able
diagnose diverse infections, autoimmune diseases, cancers, and other conditions directly from repertoire se-
quence. The key problem is how to find patterns of specific diseases in repertoire sequence, when repertoires
are so complex. Our hypothesis is that a combination of bottom-up (sequence-level) and top-down (systems-
level) modeling can reveal these patterns, by encoding repertoires as simple but highly informative models that
can be used to build highly sensitive and specific disease classifiers. In preliminary studies, we introduced
two new modeling approaches for this purpose: (i) statistical biophysics (bottom-up) and (ii) functional diversity
(top-down), and showed their ability to elucidate patterns related to vaccination status (97% accuracy), viral
infection, and aging. Building on these studies, we will test our hypothesis through two specific aims: (1) We
will develop models and classifiers based on the bottom-up approach, statistical biophysics; and (2) we will de-
velop the top-down approach, functional diversity, to improve these classifiers. To achieve these aims, we will
use our extensive collection of public immune-repertoire datasets, beginning with 391 antibody and TCR da-
tasets we have characterized previously. Our team has deep and complementary expertise in developing
computational tools for finding patterns in immune repertoires (Dr. Arnaout) and in the mathematics that under-
lie these tools (Dr. Altschul), with additional advice available as needed regarding machine learning (Dr.
AlQuraishi). This proposal is highly innovative for how our two new approaches address previous issues in the
field. (i) Statistical biophysics uses a powerful machine-learning method called maximum-entropy modeling
(MaxEnt), improving on past work by tailoring MaxEnt to learn patterns encoded in the biophysical properties
(e.g. size and charge) of the amino acids that make up antibodies/TCRs; these properties ultimately determine
what targets antibodies/TCRs can bind, and therefore which sequences are present in different diseases. (ii)
Functional diversity fills a key gap in how immunological diversity has been measured thus far, by factoring in
whether different antibodies/TCRs are likely to bind the same target. This proposal is highly significant for (i)
developing an efficient, accurate, generative, and interpretable machine-learning method for finding diagnostic
patterns in repertoire sequence; (ii) applying a robust mathematical framework to the measurement of immuno-
logical diversity; (iii) impacting clinical diagnostics; and (iv) adding a valuable new tool for integrative/big-data
medicine. The expected outcome of this proposal is an integrated pair of robust and well validated new
tools/models for classifying specific disease exposures directly from repertoire sequence. This proposal in-
cludes plans to make these tools widely available, to maximize their positive impact across medicine.
免疫库序列,由个体数百万种独特的抗体和t细胞受体组成
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramy Arnaout其他文献
Ramy Arnaout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramy Arnaout', 18)}}的其他基金
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10165490 - 财政年份:2020
- 资助金额:
$ 18.23万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10598522 - 财政年份:2020
- 资助金额:
$ 18.23万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10393605 - 财政年份:2020
- 资助金额:
$ 18.23万 - 项目类别:
Demographics Causes and Consequences of B Cell Repertoire Diversity
B 细胞库多样性的人口统计学原因和后果
- 批准号:
9199843 - 财政年份:2015
- 资助金额:
$ 18.23万 - 项目类别:
Demographics Causes and Consequences of B Cell Repertoire Diversity
B 细胞库多样性的人口统计学原因和后果
- 批准号:
8991476 - 财政年份:2015
- 资助金额:
$ 18.23万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 18.23万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 18.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 18.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 18.23万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 18.23万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 18.23万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 18.23万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 18.23万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 18.23万 - 项目类别:














{{item.name}}会员




