R01 Administrative Supplement for AI Prediction of Trauma Resuscitation Responsiveness

R01 创伤复苏反应性人工智能预测行政补充

基本信息

  • 批准号:
    10908960
  • 负责人:
  • 金额:
    $ 76.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

PARENT R01 PROJECT ABSTRACT The initial resuscitation of a trauma patient is often described as chaos and the clinician directing the care must create calm while making life and death decisions often with inadequate information. Despite some advances in understanding the biology of hemorrhage, injury still accounts for over 5 million deaths per year, represents 1 out of every 10 deaths worldwide, and remains the leading U.S. cause of death for those under 45. While > 90% of trauma patients do well, the largest contribution to preventable death remains for those suffering from hemorrhage and its related complications. Trauma has a known time zero of onset which makes it an ideal model to study the immediate pathophysiologic changes associate with hemorrhage that lead to differential outcome. To date, treatment pathways are considered rudimentary reflecting attempts to optimize outcome based upon the average treatment effect, rather than being adaptable for unique patient phenotypes. The parent R01 proposal is focused on exploring a deeper understanding of the mechanistic modeling of initial patient response to injury (Aim 1) and coupling this with improved real-time point of care bedside decision support technology (Aim 2) to identify early those at risk of poor outcome. The net product of the parent proposal is to define novel patient phenotypes that may require precision resuscitation approaches to maximize outcome following hemorrhage. The goal of the parent R01 is to develop digital biomarkers for precision trauma resuscitation with a focus on understanding the cross talk between the inflammatory and coagulation profiles that occur as a systemic response to traumatic injury. The overall goal of the parent R01 project remains unchanged and are to address limitations of our current knowledge by improving forecasts of patient outcome trajectory at the point of care for those suffering from traumatic injury. The parent R01 project addresses these gaps through two interrelated aims which also remain unchanged: AIM 1. To develop a knowledge network (neural net) approach for characterizing early patient trajectory following hemorrhage. We hypothesize that (1A) predictive trajectories for mortality and complications can be ascertained through deep learning approaches; (1B) the addition of biologic data (inflammatory and coagulation markers) will further improve the prediction of patient states or unique phenotypic patient profiles (also known as digital biomarkers) attributable to differential outcome, and (1C) these phenotypes could be utilized to improve earlier recognition of patients off their predicted trajectory and thus, optimize triage and treatment pathways. AIM 2. To develop pilot prediction models for the detection of occult hemorrhage through the integration of high fidelity, integrated point-of-care data and bedside imaging. We hypothesize that the poor sensitivity for prediction of occult hemorrhage can be improved by developing (2A) an automated computer algorithm using advanced machine learning to detect any free fluid in the abdominal cavity on point- of-care sonographic images (2B) by integrating multimodality data sources with 2A, we can predict clinically significant occult hemorrhage, and (2C) combining the imaging prediction models with the knowledge network in Aim 1, we can develop pilot enhanced digital biomarkers to identify patients suffering from clinically occult hemorrhage, those most likely to develop complications, and those most likely to succumb to their injuries. Our work to date on the Parent R01 has shown that there is differential risk of thrombotic, bleeding, respiratory, and mortality outcomes based on initial coagulation profiles3-4. Our findings have suggested that biology plays a major factor in distinguishing between two seemingly identical patients who have disparate outcomes following critically injury3-19. This includes demonstrating that severely injured patients initially suffer from bleeding due to hyperfibrinolysis, platelet dysfunction, and disordered coagulation. Those who survive rapidly transition to a state of hypercoagulability. The mechanisms for this remains elusive but disordered inflammatory cytokine upregulation has been implicated and we continue to explore this in the parent R01.
PADAPOR R 01项目摘要 创伤患者的最初复苏通常被描述为混乱, 护理必须创造平静,同时作出生与死的决定,往往与不足, 信息.尽管对出血生物学的理解取得了一些进展,但损伤仍然是一个复杂的问题。 每年有超过500万人死亡,占全球死亡人数的十分之一,并且 仍然是美国45岁以下人群的主要死因。而超过90%的创伤患者 对可预防死亡的最大贡献仍然是那些患有出血的人 及其相关并发症。创伤有一个已知的时间零点,这使得它成为一个理想的 模型研究与出血相关的直接病理生理变化, 不同的结果。迄今为止,治疗途径被认为是初步的, 根据平均治疗效果优化结果,而不是适应于 独特的患者表型。母R 01提案的重点是探索更深层次的 理解患者对损伤的初始反应的机制建模(目标1), 将其与改进的实时床旁决策支持技术相结合(目标2) 以尽早识别那些有不良结局风险的患者。母方案的净产品是定义 新的患者表型,可能需要精确的复苏方法, 出血后的结局。母公司R 01的目标是开发数字生物标志物, 精确的创伤复苏,重点是了解 作为对创伤性损伤的全身反应而发生的炎症和凝血特征。的 父R 01项目的总体目标保持不变,旨在解决我们的 通过改善对护理点患者结局轨迹的预测, 那些遭受创伤的人。父R 01项目通过两个方面解决了这些差距 相互关联的目标也保持不变: AIM 1.开发一种知识网络(神经网络)方法, 出血后的患者轨迹。我们假设(1A)预测轨迹为 死亡率和并发症可以通过深度学习方法确定;(1B)增加 生物学数据(炎症和凝血标志物)将进一步改善对患者状态的预测 或归因于差异的独特表型患者特征(也称为数字生物标志物) 结果,和(1C)这些表型可用于提高早期识别患者关闭他们的 预测轨迹,从而优化分诊和治疗途径。 AIM 2.通过以下方法开发隐匿性出血检测的先导性预测模型: 集成高保真度、集成的床旁数据和床旁成像。我们 我假设,通过开发一种新的诊断方法, (2A)使用先进的机器学习自动计算机算法来检测 通过整合多模态数据源,在床旁超声图像(2B)上显示腹腔 使用2A,我们可以预测临床上显著的隐匿性出血,以及(2C)结合成像 目标1中的知识网络预测模型,我们可以开发试点增强数字 生物标志物,以识别患有临床隐匿性出血的患者, 并发症,和那些最有可能死于他们的伤害。 迄今为止,我们对亲本R 01的研究表明,血栓形成的风险不同, 基于初始凝血特征的出血、呼吸和死亡率结果3 -4。我们的研究结果 生物学在区分两种看似不同的生物中起着重要的作用。 相同的患者在严重损伤后有不同的结果3 -19。这包括 表明严重受伤的患者最初由于纤维蛋白溶解亢进而遭受出血, 血小板功能障碍和凝血障碍。那些幸存下来的人迅速转变成一种状态 高凝状态其机制仍然是难以捉摸的,但紊乱的炎症 细胞因子的上调已经涉及,我们继续在亲本R 01中探索这一点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachael A Callcut其他文献

Rachael A Callcut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachael A Callcut', 18)}}的其他基金

Leveraging Artificial Intelligence Solutions to Develop Digital Biomarkers for Precision Trauma Resuscitation
利用人工智能解决方案开发用于精准创伤复苏的数字生物标记物
  • 批准号:
    10551190
  • 财政年份:
    2019
  • 资助金额:
    $ 76.89万
  • 项目类别:
Leveraging Artificial Intelligence Solutions to Develop Digital Biomarkers for Precision Trauma Resuscitation
利用人工智能解决方案开发用于精准创伤复苏的数字生物标记物
  • 批准号:
    10308086
  • 财政年份:
    2019
  • 资助金额:
    $ 76.89万
  • 项目类别:
Leveraging Artificial Intelligence Solutions to Develop Digital Biomarkers for Precision Trauma Resuscitation
利用人工智能解决方案开发用于精准创伤复苏的数字生物标记物
  • 批准号:
    10063555
  • 财政年份:
    2019
  • 资助金额:
    $ 76.89万
  • 项目类别:
Advancing Outcome Metrics in Trauma Surgery Through Utilization of Big Data
通过利用大数据推进创伤手术的结果指标
  • 批准号:
    9147595
  • 财政年份:
    2015
  • 资助金额:
    $ 76.89万
  • 项目类别:
Advancing Outcome Metrics in Trauma Surgery Through Utilization of Big Data
通过利用大数据推进创伤手术的结果指标
  • 批准号:
    9320947
  • 财政年份:
    2015
  • 资助金额:
    $ 76.89万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了