Enhanced Identification of Ocular Phenotypes and Outcomes in Electronic Health Record Data
增强电子健康记录数据中眼部表型和结果的识别
基本信息
- 批准号:10617779
- 负责人:
- 金额:$ 67.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdverse eventAlgorithmsAreaArtificial IntelligenceBig DataBioinformaticsBiometryBlindnessCategoriesChronic DiseaseClassificationClinicalClinical DataClinical ResearchClinical TrialsCluster AnalysisCodeCountryDataData ElementData SetDatabasesDeteriorationDevelopmentDiabetic RetinopathyDiagnostic testsDiseaseDisease ProgressionElectronic Health RecordEvolutionEyeEye diseasesFoundationsFutureGenotypeGlaucomaGrantHealth Services ResearchHealthcareInterventionMachine LearningMacular degenerationManualsMethodologyMethodsMissionNatureOphthalmologyOutcomeOutcomes ResearchPaperPatient RecruitmentsPatientsPhenotypePlanning TechniquesPositioning AttributePrecision Medicine InitiativeProbabilityProcessRegistriesResearchResearch PersonnelResearch Project GrantsRunningSensitivity and SpecificitySeverity of illnessSortingSourceStable DiseaseStructureTechniquesTestingTextTimeTranslational ResearchUnited States National Institutes of HealthVisionWorkcare providersclinical decision-makingclinical trial recruitmentclinically relevantcostdata registryelectronic health dataexperienceflexibilityimprovedinnovationinterestmachine learning algorithmnovelnovel strategiessegregationstructured datatoolunstructured data
项目摘要
ABSTRACT
The transition from paper charts to electronic health records (EHRs), advances in computing
power and storage capacity, and the availability and accessibility of sophisticated machine
learning algorithms have revolutionized the ability for researchers to tap into Big Data and make
use of it to answer all sorts of important clinical questions. However, maximizing the utility of all
of this rich clinical data from EHRs and clinical registries is predicated on the ability for researchers
to accurately identify which patients have specific diseases; to accurately classify conditions
based on their disease severity; to ascertain which patients are improving, stable, or deteriorating;
and to appropriately identify and quantify clinically relevant outcomes. Currently, nearly all
researchers who work with Big Data in ophthalmology rely exclusively on administrative billing
codes to identify common ocular diseases and outcomes of interest. Yet, research has shown
that sole reliance on billing codes is fraught with limitations and does not take full advantage of
the plethora of useful information routinely captured in structured and free-text EHR data. In this
proposal we develop, rigorously test, and validate an innovative approach to permit researchers
to more accurately identify and classify patients with common sight-threatening ocular diseases
and capture transitions from less to more severe disease states and key outcomes of interest.
Based on preliminary studies we performed, we believe our approach to enhanced ocular
phenotype identification is substantially more accurate than exclusive reliance on billing codes. In
Aim 1, we use this approach to EHR data to identify and categorize patients with 3 of the most
common causes of irreversible vision loss—glaucoma, diabetic retinopathy, and macular
degeneration. In Aim 2, we extend enhanced phenotype identification by trying to identify novel
forms of these 3 conditions; we will use cluster analysis to identify groups of clinical features
associated with these 3 ocular diseases that co-segregate together. We will also test whether
some of these clusters are associated with better or worse clinical outcomes. In Aim 3, we apply
our approach to identify key ocular outcomes in EHR data such as disease stability and
progression from less to more advanced stages for each of the 3 ocular diseases of interest. By
fulfilling the aims of this proposal, we will permit researchers throughout the country and the world
to more accurately identify important ocular diseases and outcomes in EHR and clinical registry
datasets. This will serve as a key building block to permit researchers to incorporate Big Data into
machine learning and artificial intelligence applications, genotype-phenotype association studies,
patient recruitment for clinical trials, and many other clinical and translational research projects.
摘要
从纸质病历到电子健康记录(EHR)的过渡,计算技术的进步
电力和存储容量,以及复杂机器的可用性和可访问性
学习算法彻底改变了研究人员利用大数据并使
用它来回答各种重要的临床问题。然而,最大化所有人的效用
来自EHR和临床登记处的丰富临床数据是基于研究人员的能力
准确识别哪些患者有特定的疾病;准确地对病情进行分类
根据他们的疾病严重程度;确定哪些患者正在改善、稳定或恶化;
并适当识别和量化与临床相关的结果。目前,几乎所有
在眼科使用大数据的研究人员完全依赖行政收费
识别常见眼病和感兴趣的结果的代码。然而,研究表明,
这种对帐单代码的单一依赖充满了局限性,并且没有充分利用
在结构化和自由文本的EHR数据中例行公事地捕获过多的有用信息。在这
我们开发、严格测试和验证创新方法的提案,以允许研究人员
更准确地识别和分类常见的危及视力的眼病患者
并捕捉从较轻的疾病状态到较严重的疾病状态和感兴趣的关键结果的转变。
根据我们进行的初步研究,我们认为我们的增强眼球的方法
表型识别比完全依赖帐单代码要准确得多。在……里面
目的1,我们使用这种方法对EHR数据进行识别和分类,其中
不可逆性视力丧失的常见原因--青光眼、糖尿病视网膜病变和黄斑
退化。在目标2中,我们通过尝试识别新的表型来扩展增强表型识别
这三种情况的形式;我们将使用聚类分析来确定临床特征组
与这三种共同隔离在一起的眼病有关。我们还将测试
其中一些集群与更好或更差的临床结果有关。在目标3中,我们应用
我们在EHR数据中识别关键眼部结果的方法,如疾病稳定性和
3种感兴趣的眼科疾病中的每一种都从较低的阶段进展到较晚期。通过
为了实现这项提议的目标,我们将允许全国和世界各地的研究人员
在电子病历和临床登记中更准确地识别重要的眼部疾病和预后
数据集。这将成为允许研究人员将大数据整合到
机器学习和人工智能应用,基因-表型关联研究,
为临床试验和许多其他临床和转化性研究项目招募患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua D Stein其他文献
Joshua D Stein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua D Stein', 18)}}的其他基金
Enhanced Identification of Ocular Phenotypes and Outcomes in Electronic Health Record Data
增强电子健康记录数据中眼部表型和结果的识别
- 批准号:
10444166 - 财政年份:2022
- 资助金额:
$ 67.4万 - 项目类别:
The Association Between Cataract Surgery and Progression of Diabetic Retinopathy
白内障手术与糖尿病视网膜病变进展之间的关联
- 批准号:
8264344 - 财政年份:2009
- 资助金额:
$ 67.4万 - 项目类别:
The Association Between Cataract Surgery and Progression of Diabetic Retinopathy
白内障手术与糖尿病视网膜病变进展之间的关联
- 批准号:
7804507 - 财政年份:2009
- 资助金额:
$ 67.4万 - 项目类别:
The Association Between Cataract Surgery and Progression of Diabetic Retinopathy
白内障手术与糖尿病视网膜病变进展之间的关联
- 批准号:
7642766 - 财政年份:2009
- 资助金额:
$ 67.4万 - 项目类别:
The Association Between Cataract Surgery and Progression of Diabetic Retinopathy
白内障手术与糖尿病视网膜病变进展之间的关联
- 批准号:
8065979 - 财政年份:2009
- 资助金额:
$ 67.4万 - 项目类别:
The Association Between Cataract Surgery and Progression of Diabetic Retinopathy
白内障手术与糖尿病视网膜病变进展之间的关联
- 批准号:
8460885 - 财政年份:2009
- 资助金额:
$ 67.4万 - 项目类别:
相似国自然基金
住院患者护理不良事件预测模型的构建及基于风险因素的预防性护理效果
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于血清趋化因子样因子1的动脉瘤性蛛网膜下腔出血主要不良事件预测模型构建及验证的多中心前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
和谐管理视域下医院员工不良事件报告行为驱动机制与制度优化研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
《基于冠脉CT血流储备分数与斑块特征预测管腔临界病变的心脏不良事件风险应用研究》
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于全面触发工具在医疗器械故障类不良事件预警中的研究
- 批准号:2025JJ80165
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于院外血糖管理平台的2型糖尿病患者不良事件预警模型研究
- 批准号:2025JJ70263
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于宏基因组学和ABCB1基因多态性构建老年非瓣膜性房颤患者口服NOACs不良事件机器学习预测模型
- 批准号:2024Y9009
- 批准年份:2024
- 资助金额:50.0 万元
- 项目类别:省市级项目
冠脉CTA衍生的斑块特征指数在评价稳定冠心病患者斑块稳定性和不良事件中的价值
- 批准号:
- 批准年份:2024
- 资助金额:5.0 万元
- 项目类别:省市级项目
持续葡萄糖监测技术在肾移植患者血糖管理和不良事件预
测中的价值研究
- 批准号:2024JJ9049
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于几何形态与生物力学分析预测腹主动脉瘤腔内治疗术后锚定区相关不良事件
- 批准号:82300542
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 67.4万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 67.4万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 67.4万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 67.4万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 67.4万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 67.4万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 67.4万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 67.4万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 67.4万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 67.4万 - 项目类别: