Mechanisms of regulation of mitochondrial H+ leak and thermogenesis
线粒体氢泄漏和产热的调节机制
基本信息
- 批准号:10618318
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:2,4-DinitrophenolAcuteAnti-Obesity AgentsBiological AssayBody TemperatureBrown FatBurn injuryCaloriesCellsCellular Metabolic ProcessChemical ActionsChemicalsCytoprotectionDevelopmentDinitrophenolsDiseaseEquilibriumFatty acid glycerol estersHomeostasisInner mitochondrial membraneIon ChannelMeasurementMediatorMetabolicMetabolic syndromeMetabolismMethodologyMethodsMitochondriaModernizationMolecularNutrientPatch-Clamp TechniquesPathologyPhysiologyProcessProductionProteinsProtonsReactive Oxygen SpeciesRegulationResearch Project GrantsResolutionTechniquesTherapeuticThermogenesisTimeTissuesage relatedbiophysical propertiescombatdiet-induced obesityenergy balanceinsightmitochondrial dysfunctionnoveloxidative damagepatch clamppreventtargeted treatmenttherapeutic developmentuncoupling protein 1
项目摘要
Project Summary
Mitochondria control cell metabolism by converting nutrients into an electrochemical gradient of protons (H+)
across the inner mitochondrial membrane (IMM) to generate ATP, the currency of the cell, and heat (called
mitochondrial thermogenesis). A precise balance in the distribution of H+ between the two forms of energy
production, ATP and heat, defines the metabolic homeostasis of the cell. Brown fat and beige fat mitochondria
specialize in the production of heat via the uncoupling protein 1 (UCP1). However, even in other tissues,
mitochondrial thermogenesis accounts for 25% of total mitochondrial energy production and can therefore have
a considerable impact on the physiology of the entire body. Mitochondrial thermogenesis is not only essential for
maintaining core body temperature, it is also the process by which excess calories are burned to prevent diet-
induced obesity. In addition, it reduces the production of reactive oxygen species (ROS) by the mitochondria to
protect cells from oxidative damage. In addition, chemical uncouplers such as 2,4-dinitrophenol (DNP), which
are believed to increase H+ leak independently of proteins, are the most effective anti-obesity drugs to date.
Thus, mitochondrial thermogenesis is a powerful regulator of cellular metabolism, and a mechanistic
understanding of this fundamental process will help in the development of therapeutic strategies to
combat many pathologies associated with mitochondrial dysfunction, including metabolic syndrome
and age-related disorders. Unfortunately, the precise molecular mechanisms that control the acute activation
of thermogenesis in the mitochondria are poorly defined. This lack of information is largely due to a dearth of
methods for direct measurement of H+ currents across the IMM. The development of a methodology based on
the patch-clamp technique allows for the first time the direct study of H+ leak through the IMM of each tissue and
the first biophysical characterization of mitochondrial transporters, such as UCP1 and the ADP/ATP transporter
(AAC), which are the mediators of this H+ leak. This unique approach now provides an unprecedented high-
resolution direct functional analysis of 1) the mitochondrial ion channels and transporters responsible for
mitochondrial thermogenesis and 2) the mechanisms of action of chemical uncouplers such as DNP. Using the
new mitochondrial patch-clamp assay combined with modern cellular and molecular techniques, this
research project will provide new insights into the mechanisms that control the thermogenic capacity of
the mitochondria and how they can be targeted for therapeutic purposes.
项目摘要
线粒体通过将营养物质转化为质子(H+)的电化学梯度来控制细胞代谢
通过线粒体膜(IMM)产生细胞的通货三磷酸腺苷(ATP)和热量(称为
线粒体产热作用)。H+在两种形式的能量之间分配的精确平衡
生产,三磷酸腺苷和热量,定义了细胞的代谢动态平衡。棕色脂肪和米色脂肪线粒体
专门通过解偶联蛋白1(UCP1)产生热量。然而,即使在其他组织中,
线粒体产热作用占线粒体总能量产生的25%,因此可以
对整个身体的生理有相当大的影响。线粒体产热不仅对
保持核心体温,也是燃烧多余卡路里以防止饮食的过程。
诱导性肥胖。此外,它还减少了线粒体产生的活性氧物种(ROS),以
保护细胞免受氧化损伤。此外,化学解偶联剂,如2,4-二硝基苯酚(DNP),
被认为不依赖于蛋白质而增加H+泄漏,是迄今为止最有效的减肥药物。
因此,线粒体产热是细胞新陈代谢的强大调节器,也是一种
对这一基本过程的理解将有助于制定治疗策略
与许多与线粒体功能障碍相关的病理疾病作斗争,包括代谢综合征
以及与年龄相关的疾病。不幸的是,控制急性激活的确切分子机制
线粒体的生热作用还不是很清楚。这种信息的缺乏在很大程度上是由于缺乏
直接测量跨IMM的H+电流的方法。基于以下方面的方法论开发
膜片钳技术首次允许通过每个组织的IMM直接研究H+泄漏和
线粒体转运蛋白UCP1和ADP/ATP转运蛋白的首次生物物理特征
(AAC),它们是这次H+泄漏的调解人。这种独特的方法现在提供了前所未有的高度-
1)线粒体离子通道和转运体的直接功能分析
线粒体生热作用;2)化学解偶联剂如DNP的作用机制。使用
结合现代细胞和分子技术的新的线粒体膜片钳实验,这
研究项目将为控制细菌产热能力的机制提供新的见解
线粒体以及如何将其作为治疗的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ambre Marguerite Solange Bertholet其他文献
Ambre Marguerite Solange Bertholet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ambre Marguerite Solange Bertholet', 18)}}的其他基金
Mechanisms of regulation of mitochondrial H+ leak and thermogenesis
线粒体氢泄漏和产热的调节机制
- 批准号:
10277098 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Mechanisms of regulation of mitochondrial H+ leak and thermogenesis
线粒体氢泄漏和产热的调节机制
- 批准号:
10445059 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant














{{item.name}}会员




