Targeting of LOS for Treatment of Antibiotic-Resistant Neisseria gonorrhoeae
LOS 靶向治疗抗生素耐药性淋病奈瑟菌
基本信息
- 批准号:10617635
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsAnabolismAnti-Bacterial AgentsAntibiotic TherapyAntibioticsAntimicrobial Cationic PeptidesAzithromycinBacteriaBinding ProteinsBiological AssayCanadaCardiovascular systemCefiximeCeftriaxoneCellsCephalosporinsCervicalClassificationClinicalComplementCountryCytolysisDNA BindingDataDenmarkDrug KineticsDrug-resistant Neisseria GonorrhoeaeEctopic PregnancyEnvironmentEnzymesEpithelial CellsEvaluationExposure toFemaleGenerationsGonorrheaGram-Negative BacteriaHIVHealthcareHealthcare SystemsHemolysisHumanImmune responseIn VitroIncidenceInfectionInfertilityInflammationInflammatoryInnate Immune SystemInvadedInvestigationJapanLipid AMeasurableMediatingMembraneMilitary PersonnelMissionModelingMorbidity - disease rateMulti-Drug ResistanceNeisseria gonorrhoeaeOutcomePatient CarePelvic Inflammatory DiseasePenetrationPeptidesPermeabilityPredispositionProteolysisPublic HealthRecommendationReportingResearchResistanceResistance developmentRisk BehaviorsSexually Transmitted DiseasesTestingTherapeuticTimeToxic effectVaccinesVariantVeteransWomanWorkactive dutyantimicrobialbactericidechronic pelvic paincytokinecytotoxicitydesignefficacy testingefflux pumphigh riskin vitro Assayin vitro testingin vivoin vivo evaluationinhibitorinterestlead candidatelipid biosynthesislipooligosaccharidemenmilitary servicemouse modelneutrophilnovelnovel therapeuticspreventreproductive tractresistant straintransmission process
项目摘要
Infections due to N. gonorrhoeae are a major cause of morbidity with an estimated 850,000 cases in the
U.S. and 87 million cases worldwide annually. Within the VA Health Care System, cases of gonorrhea
increased between 2013 and 2017 with the total number in that time period at 10,587. The most serious
sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause
pelvic inflammatory disease in 10-20% of women with infections, which encompasses a wide range of
inflammatory conditions and often leads to chronic pelvic pain, infertility, and ectopic pregnancy. There is no
vaccine to N. gonorrhoeae and a great need for new antibiotics due to the alarming rise in multidrug-resistance
(MDR), which is making emergence of untreatable gonococcal infections a real prospect. Currently only
ceftriaxone and azithromycin are recommended for first-line therapy, and clinical isolates resistant to both of
those antibiotics have been reported in countries including Denmark, Canada, and Japan. Thus, there is a
compelling need for new antimicrobials for gonococcal infections.
Our studies to date of N. gonorrhoeae lipooligosaccharide (LOS) and the human innate immune system
have shown that the lipid A portion of LOS is the primary inducer of cytokine-mediated inflammation and
investigations by others have shown that the lipid A also facilitates gonococcal infection. These data led us to
the concept that targeting lipid A biosynthesis would be an effective approach to combating N. gonorrhoeae
infections. We recently reported that inhibition of LpxC, the enzyme that catalyzes the second step of lipid A
biosynthesis, was bactericidal for nine multidrug-resistant and human challenge strains of gonococci and
reduced cytokine induction without apparent human cell cytotoxicity.
From the LpxC inhibitor data, we postulated that membrane disruption due to the inhibition of LOS
biosynthesis was lethal for gonococci. To investigate this, we recently evaluated the bactericidal potential of a
12 amino acid cell-penetrating peptide (CPP) for MDR and human challenge strains of N. gonorrhoeae and
found that the CPP penetrated the bacterial membrane and was bactericidal for all nine MDR and human
challenge strains of gonococci tested. Importantly, no apparent resistance to the CPP developed in surviving
bacteria as susceptibility was the same in bacteria from colonies after exposure to CPP and then retreated.
Further, the CPP reduced inflammatory cytokine induction and prevented bacterial cell invasion of cervical
epithelial cells in the absence of measurable cell cytotoxicity.
These novel data highlight LpxC and CPP as promising antimicrobials for N. gonorrhoeae and strongly
support the hypothesis of this application that inhibiting the biosynthesis of lipid A components with LpxC
inhibitors and disrupting outer membrane integrity with CPP will impact bacterial viability and host response to
N. gonorrhoeae infection in vitro and in vivo, which will have a therapeutic impact on infection outcomes.
This project is focused on optimizing and testing the efficacy of the CPP and LpxC inhibitor in relevant in
vitro assays of bactericidal activity, cytokine induction, hemolysis, and cell cytotoxicity. Mechanistic studies will
include investigations of DNA binding, cell permeabilization, proteolysis resistance, protein binding and the
effect of the MtrCDE, MacAB and NorM gonococcal efflux pumps. The lead candidate CPP and LpxC inhibitor
identified in vitro will be tested for in vivo efficacy, pharmacokinetics and cardiovascular toxicity in an
established female mouse model of gonococcal genital tract infection that has been increasingly used for
evaluation of candidate antimicrobials for treatment of gonorrhea.
We expect that the results from our studies will demonstrate the efficacy of these two antimicrobials as new
therapeutics for N. gonorrhoeae infection, which are urgently needed given the rise in MDR gonococcal strains.
This will be the first study of its kind to test these two classes of antimicrobials for efficacy against gonorrhea.
淋病链球菌引起的感染是发病率的主要原因,估计有850,000例
每年在全球范围内的美国和8700万个案件。在VA医疗保健系统中,淋病病例
在2013年至2017年之间,该时间段的总数为10,587。最严重的
后遗症被感染的妇女遭受淋球菌上升到上部生殖道的痛苦,并导致
10-20%感染的女性中有10-20%的骨盆炎症性疾病,其中包括广泛的
炎症状况,通常会导致慢性骨盆疼痛,不育和异位妊娠。没有
淋病N.
(MDR),这使得不可治疗的淋球菌感染的出现成为真正的前景。目前仅
建议将头孢曲松和阿奇霉素用于一线治疗,并且抗两者的临床分离株
这些抗生素已在包括丹麦,加拿大和日本在内的国家报告。因此,有一个
强迫对淋球菌感染的新抗菌剂的需求。
我们的研究迄今为止淋病的脂肪含糖(LOS)和人类先天免疫系统
已经表明,LOS的一部分是细胞因子介导的炎症和
其他人的调查表明,脂质A还促进了淋球菌感染。这些数据导致我们
靶向脂质生物合成的概念将是对抗淋病猪笼草的有效方法
感染。我们最近报道了抑制LPXC,催化脂质A的第二步的酶
生物合成,是淋球菌的九种耐多药和人类挑战菌株的杀菌性
细胞因子诱导降低而没有明显的人类细胞毒性。
从LPXC抑制剂数据中,我们假设由于LOS抑制而导致的膜破坏
生物合成对淋球菌致死。为了调查这一点,我们最近评估了A的杀菌潜力
12氨基酸细胞穿透肽(CPP),用于淋病和淋病的MDR和人类挑战菌株
发现CPP穿透了细菌膜,并且在所有九个MDR和人类中都是杀菌性的
测试的淋球菌的挑战菌株。重要的是,在生存中没有明显的对CPP的抵抗力
暴露于CPP后菌落中的细菌中,细菌作为易感性相同,然后退缩。
此外,CPP降低了炎性细胞因子诱导并防止细菌细胞侵袭宫颈
在没有可测量的细胞细胞毒性的情况下,上皮细胞。
这些新的数据凸显了LPXC和CPP作为淋病猪笼草的有希望的抗菌素
支持该应用的假设,该假设抑制了脂质A成分LPXC的生物合成
抑制剂和用CPP破坏外膜完整性会影响细菌的生存力,并宿主对
在体外和体内感染的淋病链球菌感染将对感染结果产生治疗影响。
该项目的重点是优化和测试CPP和LPXC抑制剂在相关性中的功效
杀菌活性,细胞因子诱导,溶血和细胞毒性的体外测定。机械研究将
包括研究DNA结合,细胞透化,抗蛋白水解性,蛋白质结合和
MTRCDE,MACAB和NORM GONOCOCOCOCOCOCOCOCCAL PUMPS的影响。铅候选CPP和LPXC抑制剂
鉴定在体外的体内功效,药代动力学和心血管毒性的测试
已越来越多地用于淋球菌生殖道感染的雌性小鼠模型
评估候选抗菌药物治疗淋病。
我们预计我们的研究结果将证明这两种抗菌剂的功效是新的
淋病感染的n。
这将是测试这两类抗菌剂对淋病的功效的第一个研究。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel small molecules that increase the susceptibility of Neisseria gonorrhoeae to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase.
- DOI:10.1093/jac/dkac204
- 发表时间:2022-08-25
- 期刊:
- 影响因子:5.2
- 作者:Mullally, Christopher;Stubbs, Keith A.;Thai, Van C.;Anandan, Anandhi;Bartley, Stephanie;Scanlon, Martin J.;Jarvis, Gary A.;John, Constance M.;Lim, Katherine Y. L.;Sullivan, Courtney M.;Sarkar-Tyson, Mitali;Vrielink, Alice;Kahler, Charlene M.
- 通讯作者:Kahler, Charlene M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary A Jarvis其他文献
Gary A Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary A Jarvis', 18)}}的其他基金
Targeting of LOS for Treatment of Antibiotic-Resistant Neisseria gonorrhoeae
LOS 靶向治疗抗生素耐药性淋病奈瑟菌
- 批准号:
10363529 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Interaction of LOS and Innate Immunity in Neisseria Infection
奈瑟菌感染中 LOS 与先天免疫的相互作用
- 批准号:
9140859 - 财政年份:2011
- 资助金额:
-- - 项目类别:
INTERACTION OF LIPID A AND INNATE IMMUNE RECEPTORS IN NEISSERIA INFECTION
奈瑟菌感染中脂质 A 和先天免疫受体的相互作用
- 批准号:
8169762 - 财政年份:2010
- 资助金额:
-- - 项目类别:
INTERACTION OF LIPID A AND INNATE IMMUNE RECEPTORS IN NEISSERIA INFECTION
奈瑟菌感染中脂质 A 和先天免疫受体的相互作用
- 批准号:
7724210 - 财政年份:2008
- 资助金额:
-- - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Mechanistic evaluation of resistance to sulfite toxicity in Salmonella
沙门氏菌抗亚硫酸盐毒性的机制评价
- 批准号:
10724560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Biosynthesis of Several Oxyvinylglycine Nonproteinogenic Amino Acids Bearing Unusual Alkoxyamine Bonds
几种带有异常烷氧基胺键的氧乙烯甘氨酸非蛋白氨基酸的生物合成
- 批准号:
10752052 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Uniquely constrained peptides for modulating TNF receptor activity
用于调节 TNF 受体活性的独特限制肽
- 批准号:
10387498 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Enzymatic Fluoroalkylation using Te-Adenosyl-Telluromethionine Analogs and Late-Stage Diversification of Natural Products Exhibiting Antibacterial Behavior
使用Te-腺苷-碲甲硫氨酸类似物进行酶促氟烷基化以及表现出抗菌行为的天然产物的后期多样化
- 批准号:
10196336 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enzymatic Fluoroalkylation using Te-Adenosyl-Telluromethionine Analogs and Late-Stage Diversification of Natural Products Exhibiting Antibacterial Behavior
使用Te-腺苷-碲甲硫氨酸类似物进行酶促氟烷基化以及表现出抗菌行为的天然产物的后期多样化
- 批准号:
10372230 - 财政年份:2021
- 资助金额:
-- - 项目类别: