Acoustofluidic Separation of Placental Nanovesicle Subpopulations in Obstetrical Diseases
产科疾病胎盘纳米囊泡亚群的声流分离
基本信息
- 批准号:10625490
- 负责人:
- 金额:$ 51.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-07 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntiviral ResponseApoptoticBathingBiologicalBiological ProcessBiologyBloodBlood TestsBlood VesselsBullaCell Culture TechniquesCellsCirculationClinicalCommunicationCulture MediaDataDevicesDiagnosticDimensionsDiscipline of obstetricsDiseaseFetal DevelopmentFetal GrowthFetal Growth RetardationField Flow FractionationFunctional disorderFundingGenomicsGleanGrantGrowth and Development functionHealthHealth StatusHomeostasisHumanImageInheritedInjuryInvestigationLipoproteinsLocationMLLT2 geneMagnetic Resonance ImagingManuscriptsMaternal-Fetal ExchangeMedicineMetabolicMicroRNAsModificationMolecularNational Institute of Child Health and Human DevelopmentNaturePathologicPathway interactionsPhysiologicalPlacentaPlacenta DiseasesPlacental BiologyPlasmaPopulationPositioning AttributePostpartum PeriodPre-EclampsiaPregnancyPregnancy ComplicationsProductionProteinsProteomeProteomicsRNAReportingReproducibilityResearchResearch PersonnelResolutionRoleSignal TransductionSomatotropin-Releasing HormoneSourceSubgroupSurfaceSystemTechnologyTherapeuticTimeTissuesUltrasonographyUterusVesicleWomanbioinformatics toolbiomaterial compatibilitycell typeclinical careclinically relevantdata complexitydata reductiondesigndifferential expressionepigenomicsexosomeextracellular vesiclesfetalfirst responderhuman diseaseimprovedin vivoinnovationinsightliquid biopsymachine learning pipelinemicrovesiclesmolecular diagnosticsnanosizednanovesiclenew technologynoninvasive diagnosisnovelperipheral bloodpregnancy healthresponsetooltraittranscriptometranscriptomicstrophoblastvesicular release
项目摘要
The placenta is essential for fetal development and growth, maternal homeostasis, and broadly, pregnancy health. Yet, our ability to non-invasively probe placental health during human pregnancy is hampered by its deep intrauterine location and its highly vascular composition, rendering the placenta largely inaccessibly for safe and dynamic investigation. Whereas placental research has been advanced by cell culture, ex vivo systems, animal models, and postpartum analyses, these indirect approaches provide ex post facto information about placental health. Placental imaging has revolutionized the field of placental medicine, but resolution at the molecular, cellular, or metabolic level remains limited. To address these challenges, we and others have focused on the release of extracellular vesicles (EVs) from placental trophoblasts, which, in humans, are directly bathed in maternal blood. We focused on exosomes (now termed small EVs or sEVs), microvesicles, and apoptotic blebs, which are continuously and abundantly released from trophoblasts into the maternal circulation and are accessible throughout pregnancy by peripheral blood tests. Among these EVs, we focus mainly on placental sEVs, which harbor messages that are seldom expressed by any other cell types and execute unique placental biological functions, such as an antiviral response. While informative, recent data indicate that sEVs are not a uniform population of vesicles, but comprise several subgroups, defined as large sEVs, small sEVs, and exomeres. In addition to their size, these sEV subtypes are characterized by distinctive cargo. Although the recent discovery of sEV subpopulations has excited researchers due to their potential to revolutionize the field of non-invasive diagnostics, sEV subpopulations have yet to be utilized in clinical settings. This is largely due to the difficulties associated with separation and isolation the nano-sized sEV subpopulations. Our group has now developed advanced acoustofluidic technologies designed to effectively, reproducibly, and rapidly isolate sEVs from blood. We show that we can separate placental sEVs into their specific subpopulations, which has not been previously accomplished. Our proposed investigation therefore focuses on the production of human placental sEV subpopulations, along with their RNA and proteome cargo. We posit that, by profiling these analytes from sEV subpopulations, we can illuminate a unique landscape of bioactive molecules that are relevant to placental health. To reduce data complexity, we propose a machine learning pipeline that will be used to probe the sub-sEV spectra during normal and pathological pregnancies. Further, we will improve our ability to purify sEV subpopulations from lipoproteins, and generate a single, integrated device that can reliably separate vesicles in real time across human gestation. We believe that our automated acoustofluidic approach to separating sEV subpopulations in a high-yield, biocompatible manner is critical to unlocking the clinical utility of sEVs. Insights gained from our investigation will improve non-invasive diagnostics during pregnancy and may uncover new targets for personalized placental therapeutics.
胎盘对于胎儿的发育和生长、母体体内平衡以及更广泛的妊娠健康至关重要。然而,我们在人类怀孕期间非侵入性地探测胎盘健康的能力受到其宫内深部位置和其高度血管成分的阻碍,使得胎盘在很大程度上无法进行安全和动态的检查。尽管胎盘研究已通过细胞培养、离体系统、动物模型和产后分析取得进展,但这些间接方法提供了有关胎盘健康的事后信息。胎盘成像彻底改变了胎盘医学领域,但分子、细胞或代谢水平的分辨率仍然有限。为了应对这些挑战,我们和其他人专注于从胎盘滋养层释放细胞外囊泡(EV),在人类中,胎盘滋养层直接沐浴在母血中。我们重点关注外泌体(现在称为小 EV 或 sEV)、微泡和凋亡泡,它们从滋养层持续大量释放到母体循环中,并且在整个怀孕期间可以通过外周血测试进行检测。在这些 EV 中,我们主要关注胎盘 sEV,它们含有任何其他细胞类型很少表达的信息,并执行独特的胎盘生物学功能,例如抗病毒反应。虽然信息丰富,但最近的数据表明 sEV 并不是统一的囊泡群体,而是包含几个亚组,定义为大 sEV、小 sEV 和外泌体。除了尺寸之外,这些 sEV 亚型还具有独特的货物特征。尽管最近发现的 sEV 亚群因其具有彻底改变非侵入性诊断领域的潜力而令研究人员兴奋,但 sEV 亚群尚未在临床环境中得到利用。这主要是由于与纳米级 sEV 亚群的分离和隔离相关的困难。我们的团队现已开发出先进的声流体技术,旨在有效、可重复、快速地从血液中分离 sEV。我们证明,我们可以将胎盘 sEV 分为特定的亚群,这在之前尚未实现。因此,我们提出的研究重点是人类胎盘 sEV 亚群的生产及其 RNA 和蛋白质组货物。我们认为,通过分析 sEV 亚群的这些分析物,我们可以阐明与胎盘健康相关的生物活性分子的独特景观。为了降低数据复杂性,我们提出了一种机器学习管道,用于探测正常和病理妊娠期间的亚 sEV 谱。此外,我们将提高从脂蛋白中纯化 sEV 亚群的能力,并生成一种单一的集成设备,可以在人类妊娠期间可靠地实时分离囊泡。我们相信,我们以高产量、生物相容性方式分离 sEV 亚群的自动化声流体方法对于解锁 sEV 的临床实用性至关重要。从我们的研究中获得的见解将改善怀孕期间的无创诊断,并可能发现个性化胎盘治疗的新目标。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extracellular vesicles and immune response during pregnancy: A balancing act.
- DOI:10.1111/imr.13074
- 发表时间:2022-07
- 期刊:
- 影响因子:8.7
- 作者:
- 通讯作者:
An acoustofluidic scanning nanoscope using enhanced image stacking and processing.
- DOI:10.1038/s41378-022-00401-2
- 发表时间:2022
- 期刊:
- 影响因子:7.9
- 作者:Jin, Geonsoo;Rich, Joseph;Xia, Jianping;He, Albert J.;Zhao, Chenglong;Huang, Tony Jun
- 通讯作者:Huang, Tony Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Jun Huang其他文献
Tony Jun Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Jun Huang', 18)}}的其他基金
Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx)
基于自动化高纯度外泌体分离的 AD 诊断系统 (AHEADx)
- 批准号:
10738697 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10405571 - 财政年份:2021
- 资助金额:
$ 51.29万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10175836 - 财政年份:2021
- 资助金额:
$ 51.29万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10689706 - 财政年份:2021
- 资助金额:
$ 51.29万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10795366 - 财政年份:2021
- 资助金额:
$ 51.29万 - 项目类别:
Acoustofluidic Separation of Placental Nanovesicle Subpopulations in Obstetrical Diseases
产科疾病胎盘纳米囊泡亚群的声流分离
- 批准号:
10418609 - 财政年份:2021
- 资助金额:
$ 51.29万 - 项目类别:
AFS/SERS Saliva-based SARS-CoV-2 Earliest Infection and Antibodies Detection
AFS/SERS 基于唾液的 SARS-CoV-2 最早感染和抗体检测
- 批准号:
10320991 - 财政年份:2020
- 资助金额:
$ 51.29万 - 项目类别:
AFS/SERS Saliva-based SARS-CoV-2 Earliest Infection and Antibodies Detection
AFS/SERS 基于唾液的 SARS-CoV-2 最早感染和抗体检测
- 批准号:
10266399 - 财政年份:2020
- 资助金额:
$ 51.29万 - 项目类别:
Enabling Efficient, Fast, Biocompatible Exosome Separation via Acoustofluidics
通过声流控技术实现高效、快速、生物相容性的外泌体分离
- 批准号:
10171868 - 财政年份:2019
- 资助金额:
$ 51.29万 - 项目类别:
Enabling Efficient, Fast, Biocompatible Exosome Separation via Acoustofluidics
通过声流控技术实现高效、快速、生物相容性的外泌体分离
- 批准号:
10456734 - 财政年份:2019
- 资助金额:
$ 51.29万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 51.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




