Advancing Secondary Data Analysis: the ENIGMA Brain Injury Data Harmonization Initiative
推进二次数据分析:ENIGMA 脑损伤数据协调计划
基本信息
- 批准号:10618768
- 负责人:
- 金额:$ 89.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgeAttenuatedBehavioralBig DataBiological MarkersBrainBrain DiseasesBrain InjuriesCalibrationClinicalCodeCognitiveCollaborationsCommunitiesDarknessDataData AggregationData AnalysesData CollectionData SetDecentralizationDecision TreesDevelopmentDiseaseEnvironmentEpilepsyFunctional ImagingFunctional Magnetic Resonance ImagingGeneticGoalsGuidelinesHeterogeneityImageInformaticsInjuryInternationalMachine LearningMagnetic Resonance ImagingMeasuresMemoryMental DepressionMeta-AnalysisMethodsModelingNeuronal PlasticityNeuropsychologyNeurosciencesOutcomePatient Self-ReportPatient-Focused OutcomesPatientsPatternPerformancePhasePhenotypePopulation StudyPost-Traumatic Stress DisordersProceduresProcessProtocols documentationPublic HealthQuality ControlResearchResearch PersonnelRestSample SizeSamplingScienceSeveritiesSiteSocioeconomic StatusStandardizationStreamStructureTBI PatientsTechniquesTestingTimeTraumatic Brain InjuryValidationbehavior testbehavioral constructclinical heterogeneitycohortcollaborative environmentcombatcomputerized data processingcostdata acquisitiondata analysis pipelinedata curationdata harmonizationdata ingestiondata pipelinedata qualitydata reductiondata sharingdesignflexibilityheterogenous dataimage processingimaging studyinsightmachine learning frameworkmultimodal dataneuroimagingnovelopen dataopen sourcepatient populationpatient subsetsportabilityprognostic valueresponsesatisfactionsharing platformstroke recoverystructural imagingsuccesstoolvirtualvirtual environmentworking group
项目摘要
Project Summary/Abstract
Traumatic brain injury (TBI) is a major public health issue globally, and while neuroimaging has been useful in
understanding disruption in brain structure and function after injury, there are a number of factors that attenuate
its prognostic ability. For example, there is tremendous heterogeneity in outcome after injury which is only
partially explained by injury severity. Cost frequently limits sample size in neuroimaging studies, yet given the
myriad factors that have been shown to influence patient outcome (age, injury severity, socioeconomic status),
small samples and mass univariate testing often result in many studies being grossly under-powered. One
solution is to combine data and create novel data sharing platforms, and the Enhancing Neuroimaging Genetics
through Meta-Analysis (ENIGMA) consortium has supported this kind of collaboration for over a decade across
a range of clinical disorders. The goal of this proposal is to develop tools and data processing procedures for
use in the ENIGMA Brain Injury working group. In the R61 phase, we aim to develop and test a workflow for
harmonized processing of behavioral data (Aim 1) as well as structural and functional (resting-state) MRI data
(Aim 2). For Aim 1 of the R61, the goal is to offer a decision tree of procedures that is data-dependent, allowing
investigators to establish common cognitive endpoints across cohorts that collect a range of neuropsychological
and clinical measures. This proposal will create sharable procedures, flexible tools, and generalizable guidelines
for best practices for extracting common cognitive endpoints from distinct behavioral test batteries (R61 Aim 1).
In Aim 2 of the R61, we develop an image processing pipeline called Harmonization and Aggregation for
Functional and structural imaging data PIPEline; HAF-PIPE) that allows for aggregation of non-equivalent
imaging data. A primary goal is to decentralize ComBat, an open-source data harmonization tool, so that it can
be used in a virtual sharing environment. Following satisfaction of the R61 Go/No-Go criteria, which is the
curation of the dataset including 13 cohorts, extraction of common cognitive endpoints, and creation of HAF-
PIPE, we will move to the R33 phase. In the R33 phase, we will leverage the large, harmonized dataset and
apply a machine learning technique (CorEx - Correlation Explanation) to identify patient clusters within each
patient population studied. HAF-PIPE and the procedures and guidelines from the R61 phase will then be
extended to additional patient populations and made available to other ENIGMA working groups. The
harmonized data, along with the tools and procedures for creating them, will be accessible to researchers
following proposal submission and approval as a curated dataset. With success, this proposal holds the promise
of significantly advancing data curation, harmonization, and sharing in the clinical neurosciences. We anticipate
that our proposal will significantly advance our understanding of factors that impact outcome after injury and will
yield a tool that will be useful across the neuroimaging community.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Larsen Dennis其他文献
Emily Larsen Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Larsen Dennis', 18)}}的其他基金
Personalized Profiles of Pathology in Pediatric Traumatic Brain Injury
小儿创伤性脑损伤的个性化病理学概况
- 批准号:
10542834 - 财政年份:2022
- 资助金额:
$ 89.86万 - 项目类别:
Personalized Profiles of Pathology in Pediatric Traumatic Brain Injury
小儿创伤性脑损伤的个性化病理学概况
- 批准号:
10377732 - 财政年份:2022
- 资助金额:
$ 89.86万 - 项目类别:
Advancing Secondary Data Analysis: the ENIGMA Brain Injury Data Harmonization Initiative
推进二次数据分析:ENIGMA 脑损伤数据协调计划
- 批准号:
10266848 - 财政年份:2020
- 资助金额:
$ 89.86万 - 项目类别:
Longitudinal Tracking of Traumatic Brain Injury: Advanced Connectomics
创伤性脑损伤的纵向追踪:高级连接组学
- 批准号:
9087791 - 财政年份:2016
- 资助金额:
$ 89.86万 - 项目类别:
Longitudinal Tracking of Traumatic Brain Injury: Advanced Connectomics
创伤性脑损伤的纵向追踪:高级连接组学
- 批准号:
9259811 - 财政年份:2016
- 资助金额:
$ 89.86万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 89.86万 - 项目类别:
Research Grant














{{item.name}}会员




