Probing the Biophysical Basis of Large-Scale Brain Dynamics Using Simultaneous PET/fMRI and EEG/PET/fMRI
使用同步 PET/fMRI 和 EEG/PET/fMRI 探索大规模脑动力学的生物物理基础
基本信息
- 批准号:10619126
- 负责人:
- 金额:$ 24.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseArousalAutomobile DrivingBehaviorBindingBiophysicsBlood VesselsBrainBrain MappingBrain regionClinicalCognitionCognitiveComplexCoupledDiseaseDissociationDopamineElectroencephalographyExhibitsFoundationsFunctional Magnetic Resonance ImagingGlucoseGoalsGrantHealthHumanLengthLinkMagnetic Resonance ImagingMapsMeasuresMental DepressionMental disordersMentorsMetabolicMethodologyModalityNatureNeurodegenerative DisordersNeuromodulatorNeuronsNeurosciencesNorepinephrineOutcomePathologicPatternPhysiologyPopulationPositron-Emission TomographyProcessProtocols documentationRegulationResearchResearch PersonnelResolutionRestSamplingScanningSchizophreniaSensitivity and SpecificitySeriesSignal TransductionSpecificityStimulusStructureSyndromeTechniquesTimeTrainingTranslational ResearchVariantVisualblood oxygen level dependentcareerclinical biomarkersclinical translationcognitive taskcostfluorodeoxyglucosefunctional magnetic resonance imaging/electroencephalographyglucose metabolismhemodynamicsinnovationinterestmultimodalityneuralneurochemistryneuroimagingneuron componentneurophysiologyneuroregulationnovelprogramssignal processingskillsstatisticsstemtoolvascular factor
项目摘要
Functional magnetic resonance imaging (fMRI) has been broadly employed to map large-scale brain dynamics in healthy and diseased populations. Withal its high spatial localization and accessibility to deep brain structures, fMRI suffers from several key limitations, including its vulnerability to systemic physiology and inaccessibility to various neuromodulatory processes, that hinder its use in deciphering the fundamental neurophysiological basis of large-scale brain dynamics. The innovation of this proposal lies in the addition to fMRI of concurrent PET imaging, a modality with higher neuronal specificity and accessibility to a myriad of metabolic and neurochemical processes, to address the essential limitations of fMRI, being an indirect marker of neural activity. Functional PET (fPET) is a recently innovated technique with the potential to track functionally relevant metabolic changes. Specifically, we will first pioneer an analytical framework to link large-scale brain dynamics with concurrent fPET signals; then as a first application, employ this framework to illuminate the neuronal changes linked with naturalistic arousal fluctuations and the metabolic underpinnings of complex network behavior. The outcomes of this proposal will lay the foundation for a long-term independent research program that employs this novel multi-modal technique to probe various neuronal, vascular, energetic and neuromodulatory mechanisms underlying large-scale brain dynamics, and ultimately identifies how disruption of any facets of these mechanisms leads to various pathological syndromes. This candidate has in-depth training in signal processing, statistics, state-of-the-art fMRI and concurrent EEG/fMRI methodology. With additional training in advanced PET methodology, multi-modal integration, neuroscience as well as clinical translational research skills enabled by this grant mechanism, she will be well versed to begin an independent career focusing on 1) developing analytical toolsets to facilitate the application of advanced neuroimaging techniques; and 2) integrating multi- faceted functional information to investigate the biophysical underpinnings of large-scale brain functional dynamics in health and disease.
功能磁共振成像(fMRI)已被广泛应用于绘制健康和患病人群的大规模脑动力学图。尽管fMRI具有高度的空间定位和对脑深部结构的可及性,但它仍存在一些关键的局限性,包括系统生理学的脆弱性和各种神经调节过程的不可及性,这阻碍了它在破译大规模脑动力学的基本神经生理学基础方面的应用。该提案的创新之处在于,在fMRI的基础上增加了并发PET成像,这是一种具有更高神经元特异性和对无数代谢和神经化学过程的可及性的模式,解决了fMRI作为神经活动间接标记物的本质局限性。功能性PET (fPET)是一项最新的创新技术,具有追踪功能相关代谢变化的潜力。具体来说,我们将首先开创一个分析框架,将大规模大脑动力学与并发fPET信号联系起来;然后作为第一个应用,使用这个框架来阐明与自然觉醒波动和复杂网络行为的代谢基础相关的神经元变化。这一建议的结果将为一个长期的独立研究项目奠定基础,该项目将采用这种新颖的多模态技术来探测大规模脑动力学背后的各种神经元、血管、能量和神经调节机制,并最终确定这些机制的任何方面的破坏如何导致各种病理综合征。该候选人在信号处理,统计学,最先进的功能磁共振成像和并发脑电图/功能磁共振成像方法方面接受过深入的培训。通过在高级PET方法、多模态集成、神经科学以及临床转化研究技能方面的额外培训,她将能够开始独立的职业生涯,专注于1)开发分析工具集,以促进先进神经成像技术的应用;2)整合多方面的功能信息,研究健康和疾病中大规模脑功能动态的生物物理基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingyuan Chen其他文献
Jingyuan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingyuan Chen', 18)}}的其他基金
Probing the biophysical basis of large-scale brain dynamics using simultaneous PET/fMRI and EEG/PET/fMRI
使用同步 PET/fMRI 和 EEG/PET/fMRI 探索大规模脑动力学的生物物理基础
- 批准号:
10040782 - 财政年份:2020
- 资助金额:
$ 24.76万 - 项目类别:














{{item.name}}会员




