Guanidinium Toxins as Molecular Probes for NaV Study
胍毒素作为 NaV 研究的分子探针
基本信息
- 批准号:10618785
- 负责人:
- 金额:$ 43.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAffinityAffinity ChromatographyAntibodiesArrhythmiaBindingBinding ProteinsBiological PhenomenaBiotinBiotinylationCell ShapeCell membraneCellsCellular MembraneChemical AgentsChemicalsChemistryCollectionComplexCryoelectron MicroscopyCuesCysteineDevelopmentDigit structureDiseaseDrug KineticsElectrophysiology (science)EngineeringEpilepsyEpitopesFluorescent DyesGenerationsGeneticGenetic VariationGoalsHumanHuman PathologyImageIndividualInflammation MediatorsInflammatoryInjuryInvestigationIonsKineticsLabelLeadLiteratureLysineMeasuresMedicineMembraneMembrane ProteinsMethodsModelingModificationMolecularMolecular ProbesMovementMutagenesisMyopathyNatural ProductsNatural SourceNatureNerve BlockNeurogliaNeuronsOral cavityOrganismPenetrationPhysiologyPopulationPost-Translational Protein ProcessingProcessPropertyProtein IsoformsProteinsProteomicsReagentReportingResearchRoleSaxitoxinShapesSignal TransductionSiteSkeletal MuscleSodium ChannelStructureStudy modelsSurfaceTetrodotoxinTherapeuticTissuesToxinTrainingTransfectionVestibuleWorkbioelectricitycell fixingcell typechemical synthesisexperimental studyextracellulargenetic approachguanidiniumhuman diseasehydrophilicityimaging agentinhibitorinsightinterestlive cell imagingmutantnanomolarnerve injurynervous system disorderneuronal excitabilityneurotransmissionpainful neuropathyprogramsprotein complexprotein degradationprotein transportresponsesmall moleculesodium ionspatiotemporalsuccesstoolvoltage
项目摘要
PROJECT SUMMARY
Neuronal excitability relies on the tightly regulated expression and discrete subcellular
localization of voltage-gated sodium ion channels (NaVs). These large membrane protein
complexes control the movement of sodium ions across cell membranes and are responsible for
initiating and propagating action potentials. A desire to better understand the role of NaV
subtypes in electrical signal conduction and the relationship between channel dysregulation and
specific human pathologies (e.g., arrhythmia, epilepsy, skeletal muscle disorders, neuropathic
pain) motivates the development of high precision reagents to facilitate NaV studies.
Investigations of NaV physiology are currently limited by a lack of available methods with which
to modulate the function of individual channel subtypes and to mark changes in cellular
distributions, membrane expression levels, and structural modifications (i.e., protein post-
translational modification) in live cells and in response to external cues.
We are developing small molecule probes for NaV studies based on naturally occurring bis-
guanidinium toxins, among which saxitoxin (STX) is the archetype. These agents function as
molecular ‘corks’ to occlude the extracellular mouth of the ion conductance pore, a desirable
feature for the types of tool compounds we wish to access. De novo chemical synthesis has
enabled the engineering of modified forms of STX, which we will use in combination with protein
mutagenesis and electrophysiology to investigate NaV activity on action potential dynamics.
Understanding how NaV expression is regulated and altered by extrinsic factors—glial cells,
inflammatory mediators, pH, nerve injury—and how such changes modulate action potentials is
a long-term goal of our research. To address these questions, we will develop and validate
three classes of tool compounds. These reagents will enable 1) acute, spatiotemporal inhibition
of individual NaV subtypes; 2) selective fluorescent labeling of membrane NaVs; and 3) affinity
purification of membrane NaVs for proteomics analysis. With the success of our research
program, we will deliver a unique set of high precision chemical probes to help illuminate the
complex physiology of NaVs that underlies bioelectrical signaling.
项目摘要
神经元的刺激性取决于严格调节的表达和离散的亚细胞
电压门控钠离子通道(NAVS)的定位。这些大膜蛋白
复合物控制钠离子跨细胞膜的运动,并负责
发起和传播行动潜力。渴望更好地了解NAV的作用
电信号传导中的亚型以及通道失调和
特定的人类病理(例如心律不齐,癫痫,骨骼肌疾病,神经性疾病
疼痛)激发高精度试剂的发展以促进NAV研究。
NAV生理学的调查目前受到缺乏可用方法的限制
调节单个通道亚型的功能并标记细胞的变化
分布,膜表达水平和结构修饰(即蛋白
在活细胞和外部线索中的转化修饰)。
我们正在为基于天然发生的双h-
鸟苷毒素,其中萨克西毒素(STX)是原型。这些代理作用
分子“软木塞”,以阻塞离子电导孔的细胞外口,是理想的
我们希望访问的工具化合物类型的功能。从头化学合成
启用了修改形式的STX的工程,我们将与蛋白质结合使用
诱变和电生理学研究了对动作电位动力学的NAV活性。
了解如何通过外在因素(乳细胞)调节和改变NAV表达
炎症介质,pH,神经损伤以及这种变化如何调节动作电位是
我们研究的长期目标。为了解决这些问题,我们将开发和验证
三类工具化合物。这些试剂将启用1)急性时空抑制
单个导航子类型; 2)膜导航的选择性荧光标记; 3)亲和力
用于蛋白质组学分析的膜NAV的纯化。随着我们的研究成功
程序,我们将提供一套独特的高精度化学问题,以帮助照亮
基于生物电信信号传导的NAV的复杂生理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Du Bois其他文献
Justin Du Bois的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Du Bois', 18)}}的其他基金
Small-molecule probes for study of CLC-2 chloride-channel function in the central nervous system
用于研究中枢神经系统 CLC-2 氯离子通道功能的小分子探针
- 批准号:
10457219 - 财政年份:2021
- 资助金额:
$ 43.62万 - 项目类别:
Small-molecule probes for study of CLC-2 chloride-channel function in the central nervous system
用于研究中枢神经系统 CLC-2 氯离子通道功能的小分子探针
- 批准号:
10355474 - 财政年份:2020
- 资助金额:
$ 43.62万 - 项目类别:
Small-molecule probes for study of CLC-2 chloride-channel function in the central nervous system
用于研究中枢神经系统 CLC-2 氯离子通道功能的小分子探针
- 批准号:
10570966 - 财政年份:2020
- 资助金额:
$ 43.62万 - 项目类别:
Small-molecule probes for study of CLC-2 chloride-channel function in the central nervous system
用于研究中枢神经系统 CLC-2 氯离子通道功能的小分子探针
- 批准号:
10189381 - 财政年份:2020
- 资助金额:
$ 43.62万 - 项目类别:
Guanidinium Toxins as Molecular Probes for NaV Study
胍毒素作为 NaV 研究的分子探针
- 批准号:
10374137 - 财政年份:2016
- 资助金额:
$ 43.62万 - 项目类别:
Guanidinium Toxins as Molecular Probes for NaV Study
胍毒素作为 NaV 研究的分子探针
- 批准号:
10211736 - 财政年份:2016
- 资助金额:
$ 43.62万 - 项目类别:
Guanidinium Toxins as Molecular Probes for NaV Study
胍毒素作为 NaV 研究的分子探针
- 批准号:
10848160 - 财政年份:2016
- 资助金额:
$ 43.62万 - 项目类别:
Guanidinium Toxins as Molecular Probes for NaV Study
胍毒素作为 NaV 研究的分子探针
- 批准号:
9330901 - 财政年份:2016
- 资助金额:
$ 43.62万 - 项目类别:
Guanidinium Toxins as Molecular Probes for NaV Study
胍毒素作为 NaV 研究的分子探针
- 批准号:
9176835 - 财政年份:2016
- 资助金额:
$ 43.62万 - 项目类别:
Saxitoxin-Antibody Conjugates as Tools for Na+ Ion Channel Study and Therapeutics
石房蛤毒素-抗体缀合物作为钠离子通道研究和治疗的工具
- 批准号:
7874774 - 财政年份:2010
- 资助金额:
$ 43.62万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 43.62万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 43.62万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 43.62万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 43.62万 - 项目类别: