Mechanical regulation of maturation and pathology of engineered human heart tissues
工程人体心脏组织成熟和病理的机械调节
基本信息
- 批准号:10604901
- 负责人:
- 金额:$ 4.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAction PotentialsAdjuvant TherapyAdultAffectBioreactorsBirthCardiacCardiac MyocytesCause of DeathCell RespirationCell TherapyCharacteristicsCombined Modality TherapyDestinationsDevelopmentDiseaseDisease modelElectric StimulationElectron TransportEngineeringEnvironmentEnzymesGene ExpressionGene Expression ProfileGenerationsGeneticGoalsGrowthGrowth and Development functionHeartHeart DiseasesHeart ResearchHeart TransplantationHeart failureHumanHuman EngineeringImmunohistochemistryIn VitroMapsMeasurementMechanical StimulationMechanicsMetabolicMethodsMitochondriaModelingMolecularMolecular ProfilingMyocardial tissueMyocardiumMyosin ATPaseOpticsPathologicPathologyPatientsPhenotypePhysiologyPlayProcessPropertyProtein IsoformsProtocols documentationRecoveryRecovery SupportRegulationReproducibilityResearchResistanceRodent ModelRoleSignal PathwaySliceStretchingStructural ProteinStructureSupplementationSystemTestingTimeTissue SampleTissuesTransmission Electron MicroscopyTroponinUnited StatesUp-RegulationVentricularWorkcardiac regenerationcardiac tissue engineeringcardiogenesiscomplex IVdrug discoveryexperiencefetalfetus cellheart cellhuman diseaseimplantationin vitro Modelinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightleft ventricular assist devicemechanical loadmechanical stimulusmechanotransductionmetabolic abnormality assessmentmimeticsnovelpharmacologicpostnatalpostnatal developmentpostnatal humanprotein expressionreal-time imagesrepositoryresponsetissue culturetooltranscriptomics
项目摘要
ABSTRACT
The advent of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offers exciting
opportunities to study human cardiac disease and development in vitro. However, hiPSC-CMs are structurally
and functionally immature and more closely resemble fetal than adult CMs as evident from their reliance on
glycolytic instead of oxidative metabolism, weak contractions and excitability, and expression of immature
isoforms of structural proteins including myosin and troponin. This makes hiPSC-CMs inadequate for studies of
adult-acquired cardiac diseases, such as heart failure (HF), which remains the leading cause of death in the
United States and worldwide. The mechanical environment of CMs is widely recognized as a key regulator of
cardiac tissue development, physiology, and disease. In particular, dynamic changes in mechanical load
experienced by CMs during postnatal development may play a key role in their acquisition of a mature adult
phenotype. I hypothesize that presentation of dynamic, time-varying stretch (preload) and resistance to
contraction (afterload) to human engineered heart tissues (hEHTs) made of hiPSC-CMs will increase their
structural and functional maturity. Furthermore, I predict that mechanical overload of hEHTs will induce
pathological features characteristic of HF progression. To test these hypotheses, I have developed a novel
bioreactor where mechanical preload and afterload imposed on hEHTs can be independently varied with time of
culture via application of stretch and electrical stimulation. Using this platform, I will systematically study how
different regimes of progressively increased preload and afterload affect structure, contractile force generation,
propagation of action potentials, and transcriptomic and metabolic properties of hEHTs. Additionally, I will employ
real-time imaging to identify and characterize the mechanotransduction mechanisms underlying the observed
functional changes in the hEHTs. For mechanical overload regimes that induce molecular and functional
signatures of an HF phenotype, I will study if different adjuvant therapies combined with applied mechanical
unloading akin to use of left ventricular assist devices (LVADs) can reverse-remodel structural and functional
deficits in hEHTs. When completed, these studies will identify new mechanobiological drivers of in vitro CM
maturation and further the molecular understanding of HF disease and therapy.
摘要
人类诱导多能干细胞来源的心肌细胞(hiPSC-CMS)的出现提供了令人兴奋的
研究人类心脏疾病和体外发育的机会。然而,HiPSC-CMS在结构上是
在功能上不成熟,比成年CMS更像胎儿,这从他们对
糖酵解代替氧化代谢,弱收缩和兴奋性,表达不成熟
结构蛋白的异构体,包括肌球蛋白和肌钙蛋白。这使得HiPSC-CMS不适合于研究
成人获得性心脏病,如心力衰竭(HF),它仍然是导致
美国和全世界。CMS的机械环境被广泛认为是一个关键的调节因素
心脏组织发育、生理学和疾病。尤其是机械载荷的动态变化
CMS在出生后发育过程中的经历可能在他们获得成熟成年人的过程中起到关键作用
表型。我假设动态、时变拉伸(预加载)和阻力的呈现
由hiPSC-CMS制成的人工程心脏组织的收缩(后负荷)将增加其
结构和功能的成熟度。此外,我预测hEHTs的机械过载将导致
心力衰竭进展的病理特征。为了验证这些假设,我开发了一本小说
生物反应器,施加在hEHTs上的机械预负荷和后负荷可以独立地随时间变化
通过拉伸和电刺激进行培养。利用这个平台,我将系统地研究如何
不同的递增预载荷和后载荷影响结构、收缩压力的产生,
动作电位的传播,以及hEHTs的转录和代谢特性。此外,我还将聘用
实时成像以识别和表征所观察到的机械转导机制
HEHTs的功能变化。对于诱导分子和功能的机械过载状态
一个HF表型的特征,我将研究不同的辅助治疗是否结合应用机械治疗
类似于使用左心室辅助装置(LVAD)的卸载可以反向重塑结构和功能
HEHTs的赤字。这些研究完成后,将确定体外CM的新的机械生物学驱动因素
成熟度和加深对心力衰竭疾病和治疗的分子理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Christopher Scherba其他文献
Jacob Christopher Scherba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant














{{item.name}}会员




