Nanoparticle Coated Microelectrode Arrays for Electrochemically Controlled Gene Editing at the Electrode Site

用于电极位点电化学控制基因编辑的纳米颗粒涂层微电极阵列

基本信息

项目摘要

Abstract Microelectrode arrays (MEAs) have great potential for therapeutic use in direct brain-computer interface (BCI) control of robotic prostheses to improve the lives of patients suffering from debilitating conditions related to loss of limbs or limb function. MEAs also have the potential to restore loss of sensory perception in vision, hearing, and tactile sensation by applying patterned current stimulation to sensory neurons. As promising as these therapies are, there is a major shortcoming to the current state of the art in implanted MEAs in that their recording and stimulation quality degrades over time, and the implants eventually become non-functional. Their use as therapeutic devices to treat chronic conditions that persist for the patient's life requires MEAs that are stable over decades rather than months to years. The underlying mechanisms leading to failure for chronically implanted MEAs have yet to be fully elucidated. One candidate is degradation of the electrode or insulation material leading to mechanical device failure. Another important factor is the host foreign body response. Inflammation due to activation of microglia and astrocytes can lead to gliosis and the formation of a “glial scar” encapsulating the device and preventing efficient recording and stimulation of neurons. Recently, gene therapy-based interventions using CRISPR/Cas systems for gene knockout have shown great promise in modifying the immune response. Recent work in the Cui lab has shown the efficacy of using functionalized silica nanoparticles (SNPs) as a versatile surface modification for microelectrodes. MEAs coated with polyethylenedioxythiophene (PEDOT)/SNP have improved electrochemical properties over standard bare metal electrodes and the capacity to be loaded with therapeutic compounds due to their porous structure with a high surface area. These properties make MEAs coated with PEDOT/SNP an ideal platform for highly targeted gene delivery, as the silica nanoparticles can be efficiently loaded with DNA. This proposal aims to develop this technology to efficiently gene modify microglia locally around implanted MEAs to reduce inflammation and to measure the effect of inflammation on recording quality and stimulation efficiency, as well as long-term device stability. In addition, I will investigate how changes in the foreign body response affect the remodeling of tissue surrounding the implant. I will take the approach of loading SNP coated MEAs with DNA encoding CRISPR gene therapy vectors targeting inflammatory pathways in microglia. The CRISPR vectors will be electrochemically delivered to cells directly interfacing with the implanted devices. The development of this technology has great potential to enhance the therapeutic value of implanted devices by increasing their performance and longevity by reducing inflammation and gliosis and to increase our fundamental understanding of how the brain responds to implanted devices. Once established, this technology will be a versatile platform for highly targeted gene delivery, having both spatiotemporal and cell-type specificity.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NATHANIEL P WILLIAMS其他文献

NATHANIEL P WILLIAMS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
  • 批准号:
    DP220100070
  • 财政年份:
    2023
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
  • 批准号:
    23K05594
  • 财政年份:
    2023
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
  • 批准号:
    10315571
  • 财政年份:
    2021
  • 资助金额:
    $ 7.86万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10477437
  • 财政年份:
    2021
  • 资助金额:
    $ 7.86万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10680037
  • 财政年份:
    2021
  • 资助金额:
    $ 7.86万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10654779
  • 财政年份:
    2021
  • 资助金额:
    $ 7.86万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10275133
  • 财政年份:
    2021
  • 资助金额:
    $ 7.86万
  • 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
  • 批准号:
    10470747
  • 财政年份:
    2021
  • 资助金额:
    $ 7.86万
  • 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
  • 批准号:
    RGPIN-2014-05517
  • 财政年份:
    2018
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
  • 批准号:
    RGPIN-2014-05517
  • 财政年份:
    2017
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了