Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
基本信息
- 批准号:10603902
- 负责人:
- 金额:$ 112.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AducanumabAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAmericanBehavioralBrainCaringClassificationClinicalClinical Decision Support SystemsCognitiveCommunicationDataData SetDetectionDevelopmentDiagnosisEarly DiagnosisEarly InterventionElectronic Health RecordEnvironmentFDA approvedHealthcareHealthcare SystemsImpaired cognitionInformation SystemsKnowledgeModelingNeurobehavioral ManifestationsNeurologistOntologyPatientsPhasePhysiciansPrevalencePrimary Care PhysicianProviderPublishingRecommendationResearchRiskRisk FactorsSenile PlaquesSignal TransductionSmall Business Innovation Research GrantSpecialistSymptomsSystemTechnologyTestingTimeValidationWorkcare costsclinical centerclinical decision supportclinical diagnosisclinical efficacycollaborative carecomputerizeddeep learningdeep learning algorithmdeep learning modeldesignevidence baseexperiencehealth care service organizationhealth recordimprovedinformation modelmedical schoolsmild cognitive impairmentnovelphase 2 studyprimary care clinicianprimary care settingprototyperecruitresearch and developmentsocial engagementsocial health determinantssupport toolstoolusability
项目摘要
Project Summary
The prevalence of Alzheimer’s disease (AD) and related dementia (AD/ADRD) is expected to nearly triple to a
staggering 13 million affected Americans and the total costs of care are projected to increase five-fold to 1.1
trillion dollars by the year 2050. Early detection of precursor stages of AD/ADRD becomes extremely important,
as it can introduce treatment or intervention earlier for potential AD/ADRD patients, given existing treatments
only have modest benefit at best. Early cognitive decline of patients is often under diagnosed by primary care
physicians (PCPs). A clinical decision support (CDS) tool that can automatically detect cognitive decline signals
from longitudinal electronic health records (EHRs) and facilitate PCPs to make timely diagnoses would be highly
desirable, as it would result in early intervention for potential AD/ADRD patients. In our Phase I Equivalent work
at Harvard Medical School, we have developed a deep learning model for earlier detection of cognitive decline
using clinical notes in Mass General Brigham’s EHRs. Here we propose a Direct-to-Phase II study, which further
develops novel deep learning algorithms for the early detection of cognitive decline, implement them into a
clinical decision support tool, and validate the tool in a primary care setting. Specifically, in Aim 1, we will develop
novel ontology, NLP, and classification approaches to identify patients with early cognitive decline using records
from EHR and extract related evidence from clinical notes. In Aim 2, we will work with frontline physicians to
design, develop and evaluate a user-centered clinical decision support tool to identify and manage patients with
cognitive decline. The system, which we intend to align with evidence-based frameworks such as the CMS
Collaborative Care Model, will identify patients at risk (with supporting evidence) and prompt personalized
recommendations for timely care. Once the system is developed and fully tested, we will implement the
developed CDS tool in a simulated EHR environment at Mass General Brigham healthcare system, using real
patient data, and formally evaluate its utility and usability by recruiting primary care clinicians. This project will
deliver not only effective models for early detection of cognitive decline, but also a practical and validated CDS
tool that can improve diagnosis of precursor stages of AD/ADRD, thus facilitating early intervention for potential
AD/ADRD patients. If successful, it will be the first study that engages primary care physicians and real patient
data to validate the utility of such a cognitive decline detection tool.
项目摘要
阿尔茨海默氏病(AD)和相关痴呆症(AD/ADRD)的患病率将几乎三倍
惊人的1300万受影响的美国人和总护理成本预计将增加五倍,达到1.1
到2050年,数万亿美元。早期发现AD/ADRD的前体阶段变得极为重要,
因为它可以对潜在的AD/ADRD患者引入治疗或干预措施,但给定现有治疗
充其量只有适中的好处。患者的早期认知能力下降通常在初级保健诊断下受到诊断
医师(PCP)。可以自动检测认知下降信号的临床决策支持(CDS)工具
从纵向电子健康记录(EHR)和促进PCP进行及时诊断将是高度的
理想的是,这将导致潜在的AD/ADRD患者的早期干预。在我们阶段我等效的工作
在哈佛医学院,我们开发了一种深度学习模型,用于早期发现认知能力下降
在弥撒将军的EHRS中使用临床笔记。在这里,我们提出了一项直接跨越II研究,进一步
开发了新颖的深度学习算法以早期检测认知能力下降,将它们实施到
临床决策支持工具,并在初级保健环境中验证该工具。具体来说,在AIM 1中,我们将发展
新的本体论,NLP和分类方法使用记录鉴定早期认知能力下降的患者
来自EHR,并从临床注释中提取相关证据。在AIM 2中,我们将与一线医生合作
设计,开发和评估以用户为中心的临床决策工具,以识别和管理患者
认知能力下降。我们打算与循证框架(例如CMS)保持一致的系统
协作护理模型,将确定有风险的患者(有证据证据),并促使个性化
建议及时护理。一旦系统开发并进行了全面测试,我们将实施
使用REAL
患者数据,并通过招募初级保健临床医生正式评估其效用和可用性。这个项目将
不仅提供有效的模型以早期检测认知能力下降,还提供了实用且经过验证的CD
可以改善AD/ADRD前体阶段诊断的工具,从而促进早期干预措施
AD/ADRD患者。如果成功,这将是第一项与初级保健医生和真正患者有关的研究
数据以验证这种认知下降检测工具的效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingcheng Du其他文献
Jingcheng Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 112.14万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 112.14万 - 项目类别:
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
- 批准号:
10667885 - 财政年份:2023
- 资助金额:
$ 112.14万 - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 112.14万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 112.14万 - 项目类别: