Cellular and circuit mechanisms enabling oxytocinergic control of pain defense
细胞和电路机制使催产素能控制疼痛防御
基本信息
- 批准号:10604260
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAmygdaloid structureAnalgesicsAnatomyAnimal ModelAnimalsArchitectureAttentionAutomobile DrivingAxonBehaviorBehavioralBrainCalciumCellsClinical TreatmentCouplingDataDedicationsDependenceElectrophysiology (science)ElementsExposure toFrequenciesGlutamatesHeterogeneityHypothalamic structureImageIndividualMeasuresMediatingModelingNervous SystemNeuronsNeuropeptidesNeurosecretory SystemsNeurotransmittersNociceptorsOpticsOutputOxytocinPainPain DisorderPain managementPerceptionPhasePhysiologicalPlayPopulationProcessPropertyRoleSensorimotor functionsShapesSignal TransductionSpinalStimulusStructureTestingVertebral columnZebrafishbehavioral responsebehavioral sensitizationconditioned fearcopingexperienceexperimental studyhindbrainhuman modelimprovedinsightinterestlong term memoryneuralneural circuitnoveloptogeneticspain perceptionpain processingpiriform cortexpost-traumatic stressreproductiveresponsesensory inputsocialtransmission process
项目摘要
Project Summary
The neurotransmitter oxytocin (OXT) is well known for its social and reproductive roles, but has also gained
increasing attention as an endogenous regulator of the neural response to pain. Exposure to noxious stimuli
activates both neuroendocrine and centrally-projecting OXT-producing neurons in the mammalian
hypothalamus, and both populations have been shown to exert analgesic effects. Additionally, the centrally-
projecting group influences pain-related behaviors such as fear conditioning through targets in the piriform
cortex and the amygdala. While the ability of these cells to dampen the acute perception and long-term memory
of painful experience makes them highly relevant to the clinical treatment of pain disorders, post-traumatic
stress, and other conditions, very little is known about the cellular and circuit mechanisms by which
hypothalamic OXT neurons influence pain processing, or more generally how they might affect other pain-
related phenomena.
This project will exploit the experimental leverage offered by the larval zebrafish to investigate the means by
which OXT neurons enhance the sensitivity of a sensorimotor circuit to painful stimuli and promote defensive
behaviors. Our central model is that stimulus intensity is encoded by graded activity in a subpopulation of OXT
neurons which project onto and activate or sensitize spinal projection neurons (SPNs) through the differential
release of OXT and glutamate. We will test this hypothesis by using a combination of calcium imaging,
optogenetics, electrophysiology, and behavior to: (1) Determine whether the subpopulation of OXT neurons
activated by pain includes cells that project onto the SPNs, and whether those neurons specifically mediate
OXT’s effects on defensive behavior; (2) Quantify the individual contributions of OXT and co-transmitted
glutamate to SPN activation and behavioral sensitization during noxious experience; (3) Determine whether
differential coupling of glutamate and OXT release to spike frequency enables the OXT neurons to switch from
a simple, excitatory mode of activity to a stronger, modulatory mode at high stimulus intensities. These
experiments will show how the basic cellular and circuit properties of oxytocinergic neurons shape the
behavioral response to pain in a vertebrate model.
项目摘要
神经递质催产素(Oxt)因其社会和生殖作用而广为人知,但也获得了
作为神经对疼痛反应的内源性调节器,越来越多的关注。接触有害刺激
激活哺乳动物的神经内分泌和中枢投射产生OXT的神经元
下丘脑,这两个群体都已被证明具有止痛作用。此外,中央-
投射群通过梨状核的靶点影响疼痛相关行为,如恐惧条件反射
皮质和杏仁核。而这些细胞抑制敏锐感知和长期记忆的能力
痛苦经历使其与创伤后疼痛障碍的临床治疗高度相关
压力和其他条件,对细胞和电路机制知之甚少
下丘脑OXT神经元影响疼痛处理,或者更广泛地说,它们可能如何影响其他疼痛-
相关现象。
这个项目将利用斑马鱼幼体提供的实验杠杆,通过
哪些OXT神经元增强感觉运动回路对疼痛刺激的敏感性并促进防御
行为。我们的中心模型是,刺激强度由OXT亚群中的分级活动编码
投射到脊髓投射神经元上的神经元,通过分化激活或敏化脊髓投射神经元。
释放牛磺酸和谷氨酸。我们将通过结合使用钙成像来验证这一假设,
光遗传学、电生理学和行为学:(1)确定OXT神经元的亚群
由疼痛激活的包括投射到SPN的细胞,以及这些神经元是否特定地介导
OXT对防御行为的影响;(2)量化OXT和共传播的个体贡献
谷氨酸对SPN激活和行为敏化的影响;(3)确定
谷氨酸和OXT释放与尖峰频率的不同耦合使OXT神经元从
在高刺激强度下,从简单的兴奋性活动模式转变为更强的调节模式。这些
实验将展示催产素能神经元的基本细胞和电路特性如何塑造
脊椎动物模型中对疼痛的行为反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM D DOUGLASS其他文献
ADAM D DOUGLASS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM D DOUGLASS', 18)}}的其他基金
Functional architecture of dopamine signaling within a zebrafish sensorimotor network
斑马鱼感觉运动网络内多巴胺信号传导的功能结构
- 批准号:
10641027 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Functional architecture of dopamine signaling within a zebrafish sensorimotor network
斑马鱼感觉运动网络内多巴胺信号传导的功能结构
- 批准号:
10522090 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Cellular and circuit mechanisms enabling oxytocinergic control of pain defense
细胞和电路机制使催产素能控制疼痛防御
- 批准号:
9890026 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
Cellular and circuit mechanisms enabling oxytocinergic control of pain defense
细胞和电路机制使催产素能控制疼痛防御
- 批准号:
10394865 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
Dopaminergic mechanisms of sensorimotor gating in larval zebrafish
斑马鱼幼虫感觉运动门控的多巴胺能机制
- 批准号:
9536271 - 财政年份:2017
- 资助金额:
$ 33.36万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists