Novel 3D Catheter Tracking System for Intracardiac Navigation

用于心内导航的新型 3D 导管跟踪系统

基本信息

  • 批准号:
    7608733
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-02-02 至 2009-08-01
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The proposed research project will entail the development and initial testing of a novel 3D catheter tracking system for intra-cardiac navigation. The long-term objective of the project is to develop a self-contained tracking mechanism that could be used for any clinical purpose requiring accurate 3D manipulation of catheters inside the heart. The first commercial application currently envisioned would be a system designed to generate 3D maps of the heart's electrical activity and accurately guide the treatment (e.g., radiofrequency ablation) of cardiac arrhythmias. The incidence and prevalence of cardiac arrhythmias has seen explosive growth in the last few decades, mirroring an alarming increase in all forms of heart disease known to trigger and perpetuate rhythm abnormalities. Atrial fibrillation alone has reached epidemic proportions, estimated to currently afflict ~2.3 million Americans and ~5.6 million by 2050. Moreover, the lifetime risk of atrial fibrillation at age 40 is 22-24% and the condition is associated with a two-fold increase in mortality. Traditional treatment modalities, namely drug therapy and open heart surgery, have been found to be inadequate for a growing number of patients, either because of poor efficacy, side effects, or the mere invasiveness of surgical procedures. The advent of specialized percutaneous catheters and the development of other enabling technologies have collectively led to an improvement in the safety and efficacy of minimally-invasive curative procedures. Having grown more than 10-fold in the last decade, catheter-based procedures have become the preferred mode of intervention in symptomatic patients. Cardiac rhythm abnormalities present a major treatment challenge, as they are often selectively triggered and perpetuated by specific areas of the heart that tend to be highly variable between patients. Since most procedures utilize an endocardial approach, effective therapy depends on reliable localization of the aberrant tissue on the complex 3D endocardial surface and the accurate delivery of ablative energy to culprit sites. As the number of catheter-based procedures performed by cardiac electrophysiologists continues to grow, the need for an accurate and reliable catheter tracking system becomes even more apparent. In response to this emerging need, several systems have been developed to facilitate catheter-mediated negotiation of the endocardial surface. Unfortunately, these systems are all plagued by significant limitations, including tracking distortions and inadequate correction for respiration and other motion artifacts. The potential consequences of inaccurate catheter tracking include ablation of electrically normal cardiac tissue, perforation, repeat procedures for recurrence, and increased procedure and x-ray exposure times. Therefore, there is no doubt that more accurate tracking remains a significant unmet need in improving the outcome of percutaneous procedures. The proposed Rhythmia system constitutes next-generation technology that is uniquely architected to provide superior compensation for motion artifacts. Combined with its open platform architecture and accurate real- time correction of field inhomogeneity, the system would address all the shortcomings of existing systems and provide excellent tracking accuracy. By improving the safety profile and long-term success of catheter-based procedures, the Rhythmia system could have a profound impact on the quality of patient care and become the primary 3D tracking tool for ablation procedures as well as additional future cardiac applications. On the heels of previously performed virtual simulations, Phase I of the proposed project will include the development of a working prototype comprising of a tracking catheter, relevant hardware (amplifiers and filters), and a workstation running a visualization module and proprietary algorithms. Once operational, the system would be tested and improved using bench-top phantom models mimicking the electrical properties of blood and structures surrounding the heart. Specifically, Phase I will have the following aims: (1) Develop a prototype system that would be able to track the 3D location of multiple electrodes within an ex-vivo test chamber. (2) Quantify tracking accuracy ex vivo when electrode-bearing catheters are immersed and surrounded by a medium of homogeneous conductivity. (3) Quantify tracking accuracy ex vivo when catheters are immersed in an inhomogeneous medium, reference electrodes are employed, and motion is introduced. Feasibility will have been demonstrated when at the end of Specific Aim #3, the system can demonstrate sub- 2mm error in measuring the distance between 2 tracked electrodes (known to be 20mm apart) located within 50mm of the tracking catheter. Upon successful completion of bench-top validation, Phase II would be commenced comprising of large animal studies. PUBLIC HEALTH RELEVANCE: Cardiac rhythm abnormalities afflict a growing number of patients, with estimates ranging from 6 to 10 million people in the US alone. Minimally invasive procedures, such as catheter ablation, are quickly emerging as the preferred approach to eliminate cardiac arrhythmias and restore normal heart beat. The proposed project looks to develop next-generation technology for more accurately localizing catheters in 3D space as they are roving within the heart chambers in order to improve both the safety and effectiveness of therapeutic procedures.
描述(由申请人提供):拟议的研究项目将需要开发和初步测试用于心内导航的新型3D导管跟踪系统。该项目的长期目标是开发一种独立的跟踪机制,可用于任何需要精确3D操纵心脏内导管的临床目的。目前设想的第一个商业应用将是被设计为生成心脏电活动的3D图并准确地引导治疗的系统(例如,射频消融术)治疗心律失常。在过去的几十年中,心律失常的发病率和患病率呈爆炸性增长,反映了已知会触发和维持节律异常的所有形式的心脏病的惊人增长。仅心房纤颤就已达到流行病的程度,估计目前约有230万美国人患病,到2050年约有560万人患病。此外,40岁时房颤的终生风险为22-24%,并且该疾病与死亡率增加两倍相关。传统的治疗方式,即药物治疗和心脏直视手术,已被发现不适合越来越多的患者,无论是因为疗效差,副作用,或仅仅是侵入性的外科手术。专用经皮导管的出现和其他使能技术的发展共同导致微创治疗程序的安全性和有效性的改善。在过去的十年中,基于导管的手术已经增长了10倍以上,已经成为有症状患者的首选干预模式。心脏节律异常是一个主要的治疗挑战,因为它们通常是由心脏的特定区域选择性触发和持续的,这些区域往往在患者之间具有高度可变性。由于大多数手术采用内镜方法,因此有效的治疗取决于复杂3D内镜表面上异常组织的可靠定位以及消融能量向罪犯部位的准确输送。随着由心脏电生理学家执行的基于导管的程序的数量持续增长,对准确和可靠的导管跟踪系统的需求变得更加明显。为了响应这种新出现的需求,已经开发了几种系统来促进导管介导的内膜表面的协商。不幸的是,这些系统都受到严重限制的困扰,包括跟踪失真和呼吸和其他运动伪影的校正不足。导管跟踪不准确的潜在后果包括电正常心脏组织的消融、穿孔、复发的重复手术以及手术和X射线暴露时间增加。因此,毫无疑问,更准确的跟踪仍然是改善经皮手术结果的一个显著未满足的需求。所提出的Rhythmia系统构成了下一代技术,该技术具有独特的架构,可为运动伪影提供上级补偿。结合其开放式平台架构和场不均匀性的精确真实的实时校正,该系统将解决现有系统的所有缺点,并提供优异的跟踪精度。通过提高基于导管的手术的安全性和长期成功率,Rhythmia系统可能对患者护理质量产生深远影响,并成为消融手术的主要3D跟踪工具以及其他未来心脏应用。在之前进行的虚拟模拟之后,拟议项目的第一阶段将包括开发一个工作原型,包括跟踪导管、相关硬件(放大器和滤波器)以及运行可视化模块和专有算法的工作站。一旦投入使用,该系统将使用模拟血液和心脏周围结构电特性的台式体模模型进行测试和改进。具体而言,第一阶段将有以下目标:(1)开发一个原型系统,该系统将能够跟踪体外测试室内多个电极的3D位置。(2)当电极承载导管浸没并被均匀导电介质包围时,体外量化跟踪准确性。(3)当导管浸没在非均匀介质中、采用参考电极并引入运动时,体外量化跟踪准确度。当在特定目标#3结束时,系统可以证明在测量位于跟踪导管50 mm范围内的2个跟踪电极(已知相距20 mm)之间的距离时,误差小于2 mm。在成功完成实验室验证后,将开始第二阶段,包括大型动物研究。公共卫生相关性:心律异常困扰着越来越多的患者,仅在美国估计就有600万至1000万人。微创手术,如导管消融术,正在迅速成为消除心律失常和恢复正常心跳的首选方法。拟议的项目旨在开发下一代技术,以便在3D空间中更准确地定位导管,因为它们在心脏腔室内漫游,以提高治疗程序的安全性和有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doron Harlev其他文献

Doron Harlev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Doron Harlev', 18)}}的其他基金

Rapid High-Resolution Electroanatomical Cardiac Mapping System for the Treatment
用于治疗的快速高分辨率电解剖心脏标测系统
  • 批准号:
    7745680
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了