New Mathematical Methods for Protein Loop Modeling

蛋白质环建模的新数学方法

基本信息

  • 批准号:
    7901563
  • 负责人:
  • 金额:
    $ 31.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project is to develop new mathematical methods to better model the loop regions of proteins. Loop regions lack secondary structure and predicting their 3-dimensional conformation from amino acid sequences is one of the main challenges in the study of protein structure and function. Loops are often the sites of the biological mechanisms of action of a protein. Learning these biological mechanisms requires mathematical and computational methods that can sample these conformations efficiently. Due to their inherent flexibility, loop regions may assume a vast variety of shapes and discovering the biologically relevant conformations of low free energy by purely random search can be prohibitive. The discovery and efficient incorporation of appropriate constraints can dramatically reduce the conformational search problem and make it tractable to computation. The Coutsias and Dill groups have published collaboratively on these problems for ten years and contributed some of the current state-of-the-art methods to various software. Here it is proposed: (1) to generalize current state of the art methods for imposing loop closure constraints to treat arbitrary steric and other physical or geometrical constraints in a unified formalism; (2) to develop the mathematics more deeply, relating the numerical analysis of constrained loop closure algorithms to the underlying algebraic and geometric properties of multivariate polynomial systems; (3) to combine our static constraint methods with Gaussian Net dynamics methods to treat dynamics efficiently too ; (4) to further increase the efficiencies and coverings through the development of novel concerted move sets combined with a deeper understanding of the topological and geometrical properties of constrained conformation spaces, and (5) to apply them to several biologically important loop modeling problems. If successful, the methods developed in this project will be useful for better understanding biological mechanisms of action and for computational drug discovery, where ligand binding to a protein often depends on its interactions with loops. PUBLIC HEALTH RELEVANCE: Reliable computer determination of the structures of loops in proteins has enormous practical applications: It enables not only prediction of loop conformations controlling biological processes - such as antigen recognition, signal transduction, and enzyme active site gating - but also reengineering of loops at critical locations in proteins for new functions.
描述(由申请人提供):本项目旨在开发新的数学方法,以更好地模拟蛋白质的环区域。环区缺乏二级结构,从氨基酸序列预测其三维构象是蛋白质结构和功能研究的主要挑战之一。环通常是蛋白质的生物学作用机制的位点。学习这些生物学机制需要数学和计算方法,可以有效地对这些构象进行采样。由于其固有的灵活性,环区域可以呈现各种各样的形状,并且通过纯粹的随机搜索发现低自由能的生物相关构象可能是禁止的。适当的约束条件的发现和有效的结合可以显着减少构象搜索问题,使其易于计算。Ceclias和Dill小组已经在这些问题上合作发表了十年,并为各种软件贡献了一些当前最先进的方法。在此建议:(1)概括当前用于施加环闭合约束的现有技术方法,以统一的形式体系来处理任意空间和其他物理或几何约束;(2)更深入地发展数学,将约束环闭合算法的数值分析与多元多项式系统的基本代数和几何性质相关联;(3)联合收割机将我们的静态约束方法与高斯网动力学方法相结合,有效地处理动力学问题;(四)通过开发新的协同移动集,结合对约束构象的拓扑和几何性质的更深入理解,进一步提高效率和覆盖率空间,和(5)将它们应用到几个生物学上重要的环路建模问题。如果成功,该项目中开发的方法将有助于更好地理解生物学作用机制和计算药物发现,其中配体与蛋白质的结合通常取决于其与环的相互作用。公共卫生关系:可靠的计算机确定蛋白质中环的结构具有巨大的实际应用:它不仅可以预测控制生物过程的环构象-例如抗原识别,信号转导和酶活性位点门控-而且还可以在蛋白质的关键位置重新设计环以实现新功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evangelos A. Coutsias其他文献

Prody's latest advancements: Gaining insights into protein-protein and protein-water interactions, and their role in protein dynamics
  • DOI:
    10.1016/j.bpj.2023.11.2804
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Karolina Mikulska-Ruminska;Frane Doljanin;James M. Krieger;Xin Cao;Gary Wu;Anupam Banerjee;Carlos Simmerling;Evangelos A. Coutsias;Ivet Bahar
  • 通讯作者:
    Ivet Bahar
emInSty/em: A emProDy/em Module for Evaluating Protein Interactions and Stability
emInSty/em:一个用于评估蛋白质相互作用和稳定性的emProDy/em模块
  • DOI:
    10.1016/j.jmb.2025.169009
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Karolina Mikulska-Ruminska;James M. Krieger;Anupam Banerjee;Xin Cao;Gary Wu;Anthony T. Bogetti;Feng Zhang;Carlos Simmerling;Evangelos A. Coutsias;Ivet Bahar
  • 通讯作者:
    Ivet Bahar
On the comparison of energy sources: Feasibility of radio frequency and ambient light harvesting
  • DOI:
    10.1016/j.renene.2015.03.065
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander O. Korotkevich;Zhanna S. Galochkina;Olga Lavrova;Evangelos A. Coutsias
  • 通讯作者:
    Evangelos A. Coutsias

Evangelos A. Coutsias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evangelos A. Coutsias', 18)}}的其他基金

Solvation modeling for next-gen biomolecule simulations
下一代生物分子模拟的溶剂化建模
  • 批准号:
    10450827
  • 财政年份:
    2020
  • 资助金额:
    $ 31.63万
  • 项目类别:
Solvation modeling for next-gen biomolecule simulations
下一代生物分子模拟的溶剂化建模
  • 批准号:
    10164812
  • 财政年份:
    2020
  • 资助金额:
    $ 31.63万
  • 项目类别:
Solvation modeling for next-gen biomolecule simulations
下一代生物分子模拟的溶剂化建模
  • 批准号:
    10665573
  • 财政年份:
    2020
  • 资助金额:
    $ 31.63万
  • 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
  • 批准号:
    8115073
  • 财政年份:
    2009
  • 资助金额:
    $ 31.63万
  • 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
  • 批准号:
    8310016
  • 财政年份:
    2009
  • 资助金额:
    $ 31.63万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 31.63万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了