Solvation modeling for next-gen biomolecule simulations
下一代生物分子模拟的溶剂化建模
基本信息
- 批准号:10164812
- 负责人:
- 金额:$ 112.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAffinityAlzheimer&aposs DiseaseAmino AcidsAmyloidosisAntibodiesAreaBindingBinding ProteinsBiochemical PathwayBiologicalBiological ProcessBiophysicsCellsCollaborationsColloidsCommunicationCommunitiesComplexComputer ModelsDecision MakingDependenceDevelopmentDiffusionDillDiseaseDockingEnvironmentEquilibriumEventExcipientsFormulationGoalsHealthHot SpotHuntington DiseaseIntelligenceJointsLeadershipLigandsLiquid substanceMacrocyclic CompoundsMathematicsMechanicsMethodsModelingMolecular ConformationMolecular StructureMonoclonal AntibodiesMotionNerve DegenerationNeurodegenerative DisordersPaperPharmaceutical PreparationsPhasePhysicsPlant RootsPropertyProteinsPublishingQuantum MechanicsRadialResearchSaltsSloveniaSolventsStatistical MechanicsSurfaceSystemTestingTimeTrainingViscosityWaterWorkaging populationbasebiochemical modelblindcommunedesigndrug discoveryflexibilityhigh riskimprovedinnovationmeetingsmethod developmentnext generationnovel drug classphysical modelphysical propertyprotein aggregationprotein foldingprotein protein interactionscreeningsimulationtheoriestherapeutic proteinweb server
项目摘要
Project Summary / Abstract
Computational biophysics and drug discovery need much faster, better, and in some cases
completely reformulated physical modeling of protein solvation and of protein-protein interactions:
for designing macrocyclic compounds that can sandwich into large protein-protein interfaces; for
modeling biochemical pathways; for computing multi-antibody motions, binding and recognition;
for formulating therapeutic protein solutions against folding and aggregation instabilities; and to
mitigate against diseases of protein aggregation.
Achieving fast, accurate and scalable modeling of proteins that are large or in complexes or
aggregates, and that are in water, requires a team that can innovate from four largely non-
overlapping research communities: atomistic protein MD, protein-protein docking, protein-colloid
liquid-state theory, and water statistical mechanics. Combining these approaches is needed for big
advances toward fast and accurate computer modeling on biologically relevant time and space
scales, with proper statistical mechanics. Here, our team is 6 PIs that have already been pairwise
highly collaborative (42 joint papers), and that each bring forefront capabilities (Simmerling, a key
developer or AMBER and GBNECK; Kozakov, developer of CLUSPRO, top protein-protein interaction
webserver in CAPRI; Coutsias, mathematical geometer whose BRIKARD gives proven acceleration of
constrained search by 100x; Hribar-Lee, whose Wertheim Theory successfully predicts simple
protein aggregation; Fennell, developer of SEA, a fast accurate water model; and Dill, developer of
statistical mechanical models of water and of MELD, an MD accelerator that has proven successful
in CASP).
Our 5-year Aims include: (A) Going beyond rigid protein-protein docking, to include
conformational flexibility, atomic detail, scalability to large systems, and affinities. (B) Predicting
protein and antibody aggregation hot-spots and dependencies on salts and excipients. (C)
Developing AmberSB force fields with next generation implicit solvent, and faster, more accurate
surface-area calculations, with blind testing in CASP, SAMPL and CAPRI events. (D) Developing
‘super-fast’ analytical water models for solution equilibria, and for water dynamics, such as
diffusion, viscosities and transport at surfaces and through pores. A Team Management Plan is
proposed to optimize collaborative research with concerted leadership, and to provide for ongoing
communication, engagement and the development of collective intelligence.
项目摘要/摘要
计算生物物理学和药物发现需要更快、更好、在某些情况下
蛋白质溶剂化和蛋白质-蛋白质相互作用的完全重新制定的物理模型:
用于设计可以夹在大的蛋白质-蛋白质界面中的大环化合物;
模拟生化途径;用于计算多抗体的运动、结合和识别;
用于配制针对折叠和聚集不稳定性的治疗性蛋白质解决方案;以及
缓解蛋白质聚集的疾病。
实现快速、准确和可扩展的蛋白质建模,这些蛋白质是大的、复杂的或
聚集体,以及在水中的,需要一个团队能够从四个主要非
重叠研究社区:原子蛋白质MD、蛋白质-蛋白质对接、蛋白质-胶体
液态理论和水统计力学。大型企业需要将这些方法结合起来
关于生物相关时间和空间的快速和准确的计算机建模的进展
规模,并有适当的统计机制。在这里,我们的团队是6个已经成对的PI
高度协作(42篇联合论文),每一篇都带来了前沿能力(Simmerling,一个关键
显影剂或琥珀和GBNECK;CLUSPRO的开发商科扎科夫,顶级蛋白质-蛋白质相互作用
卡普里的Web服务器;Coutsias,数学几何学家,其BRIKARD提供了经过验证的加速
受限搜索减少100倍;Hribar-Lee,他的Wertheim理论成功地预测了Simple
蛋白质聚集;Fennell,快速准确的水模型SEA的开发者;以及Dill,开发者
水和已被证明成功的MD加速器MELD的统计力学模型
在履约协助方案中)。
我们的5年目标包括:(A)超越僵化的蛋白质-蛋白质对接,包括
构象灵活性、原子细节、对大型系统的可伸缩性和亲和力。(B)预测
蛋白质和抗体聚集热点以及对盐和辅料的依赖。(C)
用新一代隐式溶剂开发AmberSB力场,更快、更准确
表面积计算,在CASP、SAMPL和CAPRI事件中进行盲测。(D)发展中
溶液平衡和水动力学的“超快”分析水模型,如
在表面和通过毛孔的扩散、粘度和传输。团队管理计划是
建议在协调领导下优化协作研究,并为持续的
交流、参与和集体智力的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evangelos A. Coutsias其他文献
Prody's latest advancements: Gaining insights into protein-protein and protein-water interactions, and their role in protein dynamics
- DOI:
10.1016/j.bpj.2023.11.2804 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Karolina Mikulska-Ruminska;Frane Doljanin;James M. Krieger;Xin Cao;Gary Wu;Anupam Banerjee;Carlos Simmerling;Evangelos A. Coutsias;Ivet Bahar - 通讯作者:
Ivet Bahar
emInSty/em: A emProDy/em Module for Evaluating Protein Interactions and Stability
emInSty/em:一个用于评估蛋白质相互作用和稳定性的emProDy/em模块
- DOI:
10.1016/j.jmb.2025.169009 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:4.500
- 作者:
Karolina Mikulska-Ruminska;James M. Krieger;Anupam Banerjee;Xin Cao;Gary Wu;Anthony T. Bogetti;Feng Zhang;Carlos Simmerling;Evangelos A. Coutsias;Ivet Bahar - 通讯作者:
Ivet Bahar
On the comparison of energy sources: Feasibility of radio frequency and ambient light harvesting
- DOI:
10.1016/j.renene.2015.03.065 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Alexander O. Korotkevich;Zhanna S. Galochkina;Olga Lavrova;Evangelos A. Coutsias - 通讯作者:
Evangelos A. Coutsias
Evangelos A. Coutsias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evangelos A. Coutsias', 18)}}的其他基金
Solvation modeling for next-gen biomolecule simulations
下一代生物分子模拟的溶剂化建模
- 批准号:
10450827 - 财政年份:2020
- 资助金额:
$ 112.87万 - 项目类别:
Solvation modeling for next-gen biomolecule simulations
下一代生物分子模拟的溶剂化建模
- 批准号:
10665573 - 财政年份:2020
- 资助金额:
$ 112.87万 - 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
- 批准号:
7901563 - 财政年份:2009
- 资助金额:
$ 112.87万 - 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
- 批准号:
8115073 - 财政年份:2009
- 资助金额:
$ 112.87万 - 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
- 批准号:
8310016 - 财政年份:2009
- 资助金额:
$ 112.87万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 112.87万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 112.87万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 112.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 112.87万 - 项目类别:
Studentship














{{item.name}}会员




