Catalytic Aerobic Oxidations for Pharmaceutical Synthesis: Flow-Reaction Methods
用于药物合成的催化有氧氧化:流动反应方法
基本信息
- 批准号:7820590
- 负责人:
- 金额:$ 45.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAerobicAlcoholsAminationAminesAreaBenchmarkingBenignCarbonChemicalsChemistryClassificationCollaborationsDevelopmentEnabling FactorsEngineeringEnvironmental ImpactExhibitsExplosionHydrogen BondingHydrogenationInvestigationKetonesLiteratureMetalsMethodologyMethodsMolecularNitrogenNoble GasesOxidantsOxygenPalladiumPharmacologic SubstancePlayProcessProductionPublic HealthReactionReagentReportingResearchRoleRouteSafetyScientistSolutionsSolventsSystemTechnologyTemperatureTestingTranslatingTranslationsUniversitiesWisconsinWorkbasecatalystchemical synthesisdesigndesign and constructiondrug developmentdrug discoveryhazardimprovedinnovationlarge scale productionmethod developmentmolecular sievingoxidationpressurepublic health relevancetertiary aminetool
项目摘要
DESCRIPTION (provided by applicant): This proposal addresses Broad Challenge Area (06) Enabling Technologies and Specific Challenge Topic 06-GM-109 Green chemistry and engineering for drug discovery, development, and production. Development of chemical methodologies and tools to promote green chemistry and engineering innovation into drug discovery, development, and production. Selective oxidation reactions are among the most important classes of reactions in chemical synthesis. Molecular oxygen is the least expensive and most environmentally benign chemical oxidant available, yet it is virtually never used in drug development and production because aerobic oxidation reactions typically exhibit poor reaction selectivity and present insurmountable safety hazards. The project described in this proposal will build upon recent advances in metal-catalyzed reactivity and innovations in reaction engineering in order to achieve safe and scalable methods for use of molecular oxygen as a selective oxidant in pharmaceutical synthesis. Flow-reactor technology provides a means to translate small-scale aerobic oxidation reactions, many of which have been reported in the recent literature, into large-scale pharmaceutical processes. The design, construction and testing of operational flow reactors will be performed in collaboration with scientists and engineers at Eli Lilly (Indianapolis, IN), and this work will target the development of reactors compatible with both homogeneous and heterogeneous reaction solutions. These reactors will be used for systematic investigation of factors (catalyst identity, temperature, pressure, flow-rate, etc.) that enable effective translation of results obtained from small-scale, batch reactions into successful flow-based processes. Initial studies will focus on palladium-catalyzed methods for aerobic alcohol oxidation, which have been the focus of considerable synthetic and mechanistic investigation by the PI and his group over the past 10 years. The results of these studies should be applicable to the entire scope of aerobic oxidation reactions that have been reported in recent years, including methods for carbon-nitrogen bond formation, allylic acetoxylation and C-H bond functionalization reactions. The expanding scope of selective aerobic oxidation reactions suggests that this project will play an important role in promoting "green chemistry" in large-scale production of pharmaceuticals. Once the flow reaction methods are established, they will be used to achieve two synthetically useful tandem transformations that build upon flow-based aerobic alcohol oxidations: (1) convergence of racemic secondary alcohols into their enantiomerically pure form via sequential aerobic alcohol oxidation/enantioselective ketone hydrogenation, and (2) the conversion of alcohols to (chiral) amines via sequential aerobic alcohol oxidation/(enantioselective) reductive amination reactions. In the both classes of reactions, oxidation reactions with O2 and reduction reactions with H2 will be performed in flow.
PUBLIC HEALTH RELEVANCE: Molecular Oxygen is the most abundant and environmentally benign oxidant available for chemical synthesis; however, fundamental challenges limit its utility in pharmaceutical synthesis. The proposed research will implement innovative chemistry (new catalytic methods) and engineering (flow-reactor technology) strategies to overcome this limitation, thereby enabling widespread use of a new environmentally benign ("green") method for the development and production of pharmaceuticals.
描述(由申请人提供):本提案涉及广泛的挑战领域(06)使能技术和特定挑战主题06-GM-109绿色化学和工程,用于药物发现、开发和生产。开发化学方法和工具,推动绿色化学和工程创新进入药物发现、开发和生产。选择性氧化反应是化学合成中最重要的一类反应。分子氧是现有的最便宜、最环保的化学氧化剂,但它几乎从未用于药物开发和生产,因为好氧氧化反应通常表现出较低的反应选择性,并存在难以克服的安全隐患。本提案中描述的项目将建立在金属催化反应性和反应工程创新的最新进展的基础上,以实现在药物合成中使用分子氧作为选择性氧化剂的安全和可扩展的方法。流动反应器技术提供了一种将小规模好氧氧化反应转化为大规模制药过程的方法,其中许多已在最近的文献中报道。操作流动反应器的设计、建造和测试将与礼来公司(印第安纳波利斯,IN)的科学家和工程师合作进行,这项工作的目标是开发与均相和非均相反应解决方案兼容的反应器。这些反应器将用于系统地研究各种因素(催化剂特性、温度、压力、流量等)。这使得能够有效地将从小规模、间歇反应中获得的结果转化为成功的基于流程的过程。最初的研究将集中在钯催化的好氧乙醇氧化方法上,这是过去10年来PI和他的团队进行大量合成和机理研究的重点。这些研究的结果应该适用于近年来报道的整个有氧氧化反应的范围,包括碳-氮键的形成方法、烯丙基乙酰氧基化和C-H键功能化反应。选择性好氧氧化反应范围的扩大表明,该项目将在推动药品规模化生产中发挥重要作用。一旦建立了流动反应方法,它们将被用来实现两种合成上有用的串联转化,这两种转化建立在基于流动的好氧醇氧化基础上:(1)通过顺序好氧醇氧化/对映体选择性酮氢化将外消旋仲醇聚合成其对映体纯形式;(2)通过顺序好氧醇氧化/(对映选择性)还原胺化反应将醇转化为(手性)胺。在这两类反应中,与O2的氧化反应和与H2的还原反应都将在流动中进行。
与公共健康相关:分子氧是可用于化学合成的最丰富和对环境最无害的氧化剂;然而,根本性的挑战限制了其在药物合成中的应用。拟议的研究将实施创新的化学(新催化方法)和工程(流动反应器技术)战略,以克服这一限制,从而使一种新的环境友好(“绿色”)方法能够广泛用于药物的开发和生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shannon S Stahl其他文献
Modular Electrochemical Synthesis Using a Redox Reservoir Paired with Independent Half-Reactions
- DOI:
https://doi.org/10.1016/j.joule.2020.11.011 - 发表时间:
2021 - 期刊:
- 影响因子:39.8
- 作者:
Fengmei Wang;Wenjie Li;Rui Wang;Tianqi Guo;Hongyuan Sheng;Hui-Chun Fu;Shannon S Stahl;Song Jin - 通讯作者:
Song Jin
Shannon S Stahl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shannon S Stahl', 18)}}的其他基金
Radical Relay Methods for Selective C-H Oxidation
选择性 C-H 氧化的自由基接力方法
- 批准号:
9767243 - 财政年份:2018
- 资助金额:
$ 45.01万 - 项目类别:
Palladium-Catalyzed Aerobic Dehydrogenation of Carbon-Carbon Bonds
钯催化碳-碳键有氧脱氢
- 批准号:
8794442 - 财政年份:2012
- 资助金额:
$ 45.01万 - 项目类别:
Palladium-Catalyzed Aerobic Dehydrogenation of Carbon-Carbon Bonds
钯催化碳-碳键有氧脱氢
- 批准号:
8607575 - 财政年份:2012
- 资助金额:
$ 45.01万 - 项目类别:
Palladium-Catalyzed Aerobic Dehydrogenation of Carbon-Carbon Bonds
钯催化碳-碳键有氧脱氢
- 批准号:
8221784 - 财政年份:2012
- 资助金额:
$ 45.01万 - 项目类别:
相似海外基金
Targeting aerobic glycolysis via hexokinase 2 inhibition in Natural Killer T cell lymphomas
通过抑制己糖激酶 2 靶向自然杀伤 T 细胞淋巴瘤中的有氧糖酵解
- 批准号:
23K07830 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Late Metal Catalytic Systems for Aerobic Partial Oxidation of Alkanes
开发烷烃有氧部分氧化的后金属催化系统
- 批准号:
2247667 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Standard Grant
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
- 批准号:
10696409 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
- 批准号:
10581973 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
MIND Foods and Aerobic Training in Black Adults with HTN: An ADRD Prevention Pilot RCT (MAT)
MIND 食品和患有 HTN 的黑人成人的有氧训练:ADRD 预防试点随机对照试验 (MAT)
- 批准号:
10585366 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Investigating the physical and chemical controls on aerobic methane oxidation
研究好氧甲烷氧化的物理和化学控制
- 批准号:
2241873 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Standard Grant
Pro-Resolving Inflammatory Mediators in Neurovascular Gains in Aerobic Training; a phase 2, double-blind, randomized placebo-controlled trial (PRIMiNG-AT2)
有氧训练中促进神经血管增益的炎症介质的消除;
- 批准号:
485524 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Operating Grants
Effect of aerobic exercise-induced sleep changes on arterial stiffness associated with postprandial hyperglycemia.
有氧运动引起的睡眠变化对与餐后高血糖相关的动脉僵硬度的影响。
- 批准号:
23K10645 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别:
Supporting Aging through Green Exercise (SAGE): Comparing the cognitive effects of outdoor versus indoor aerobic exercise in older adults with mild cognitive impairment: A proof-of-concept randomized controlled trial
通过绿色运动支持老龄化 (SAGE):比较户外与室内有氧运动对患有轻度认知障碍的老年人的认知效果:概念验证随机对照试验
- 批准号:
495185 - 财政年份:2023
- 资助金额:
$ 45.01万 - 项目类别: