Reading the histone code:nanoscale morphology of Epigneomic Histone Modifications

读取组蛋白密码:表观组蛋白修饰的纳米级形态

基本信息

  • 批准号:
    7821524
  • 负责人:
  • 金额:
    $ 46.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Challenge Area: 06 Enabling Technologies. Specific Challenge Topic: 06-GM-101 Structural Analysis of Macromolecular Complexes. A major challenge in chromatin biology and molecular cytology is how to study the macromolecular structures of specific epigenetic chromatin modifications in single cells at nanoscale resolution. The many post-translational modifications of histone proteins play critical roles in defining the biological functions of chromosomes. There are different sets of modifications associated with transcriptionally active chromatin, with inactive chromatin, with replicating chromatin, with sites of chromosome damage, and with key subnuclear compartments such as centromeres and telomeres. Defects in these epigenetic marks, in the enzymes and proteins that "read", "write", and "erase" them, have been found to occur in many human diseases, including cancer and neural degenerative syndromes. Furthermore, these epigenetic marks are key determinants in stem cell biology, and are important both in maintaining the pluripotent state and in driving differentiation. At present, there are no technologies that can visualize the macromolecular structures of epigenetic histone modifications in single cells at resolutions any better than approximately 200-300 nm. The resolution of light microscopy is limited by diffraction, and the resolution of electron microscopy is limited by lack of contrast. Biochemical techniques including mass spectroscopy, chromatin immunoprecipitation, and chromosome conformation capture, are making great strides in defining the functional combinations of histone marks, but they cannot image those structures within the nucleus or follow their dynamics in live cells. That is the challenge. To meet it, we have designed novel probes of histone modification by fusing multivalent binding domains to photoactivatable fluorophores and expressing these "decoder" constructs in cells. Using recent advances in super-resolution microscopy, the positions of these reporters can be determined with a localization precision of 6-10 nm, reconstructing the image of modifications at a resolution below the width of the 30 nm chromatin fiber. The goal of this project is to exploit this proof of principle and develop the technology to enable researchers to explore the macromolecular structures of chromatin at levels that are an order of magnitude more precise than is currently possible. Over the next two years we will address three major aims. (1) We will construct a high quality, versatile set of decoder constructs that represent all of the known histone modification binding motifs. (2) We will characterize the properties and binding specificities of these decoders by comparing their co-localization with traditional antibody probes, by conducting genome-wide sequencing of bound DNA in chromatin immunoprecipitations, and by imaging the reporters in three-dimensions and in live cells. (3) We will construct decoders that are predicted to have novel new binding specificities through the rational design of chimeric, artificial multivalent, and synthetic binding motif combinations. The results of these efforts will develop the technology to enable the routine visualization of the nanoscape of chromatin epigenetics. This will impact basic research by providing the tools, reagents, and protocols that will marshal a paradigm shift in how chromatin is studied. Moreover, since chromatin modifications have real practical importance for cancer, neural degeneracies, embryonic development, assisted reproductive services, and future stem cell therapies, the ability to image epigenetic marks rapidly, in single live cells, at nanoscale resolutions has the potential to radically improve the diagnosis, classification, and treatment modalities associated with a wide spectrum of human health issues. Complex modifications of proteins on the chromosomes have major roles in regulating cellular physiology and keeping cells normal and healthy. A severe limitation in studying how these modifications work is the fact that we cannot see them, observe their structural organizations, or watch how they come and go. Overcoming this limitation is a formidable challenge that will have enormous impact on both basic and clinical health science, including cancer, neurodegenerative syndromes, and stem cell therapies. This project will exploit breakthroughs in fluorescent light microscopy, and recent insights into the biophysics of the modifications, to develop technology that will enable researchers to see the structures of these modifications for the first time at nanoscale resolution in single live cells.
描述(由申请人提供):挑战领域:06使能技术。具体挑战题目:06-GM-101高分子复合物的结构分析。染色质生物学和分子细胞学的一个主要挑战是如何在纳米级分辨率下研究单细胞中特定表观遗传染色质修饰的大分子结构。组蛋白的许多翻译后修饰在确定染色体的生物学功能中起着关键作用。存在与转录活性染色质、与非活性染色质、与复制染色质、与染色体损伤位点以及与关键亚核区室(如着丝粒和端粒)相关的不同组的修饰。这些表观遗传标记的缺陷,在“读”,“写”和“擦除”它们的酶和蛋白质中,已被发现发生在许多人类疾病中,包括癌症和神经退行性综合征。此外,这些表观遗传标记是干细胞生物学中的关键决定因素,并且在维持多能状态和驱动分化方面都很重要。目前,没有技术可以以任何优于约200-300 nm的分辨率可视化单细胞中表观遗传组蛋白修饰的大分子结构。光学显微镜的分辨率受到衍射的限制,而电子显微镜的分辨率受到缺乏对比度的限制。包括质谱、染色质免疫沉淀和染色体构象捕获在内的生物化学技术在确定组蛋白标记的功能组合方面取得了长足的进步,但它们无法对细胞核内的这些结构进行成像,也无法跟踪它们在活细胞中的动力学。这就是挑战。为了满足它,我们已经设计了新的组蛋白修饰的探针,通过融合多价结合结构域的光活化荧光团和表达这些“解码器”的结构在细胞中。使用超分辨率显微镜的最新进展,这些报告分子的位置可以以6-10 nm的定位精度确定,以低于30 nm染色质纤维宽度的分辨率重建修饰的图像。该项目的目标是利用这一原理证明并开发技术,使研究人员能够以比目前可能的更精确的数量级水平探索染色质的大分子结构。在今后两年中,我们将致力于实现三个主要目标。(1)我们将构建一个高质量的,多功能的解码器结构,代表所有已知的组蛋白修饰结合基序。(2)我们将通过比较它们与传统抗体探针的共定位,通过在染色质免疫沉淀中对结合的DNA进行全基因组测序,以及通过在三维和活细胞中对报告者进行成像,来表征这些解码器的特性和结合特异性。(3)我们将通过嵌合、人工多价和合成结合基序组合的合理设计,构建预测具有新的结合特异性的解码器。这些努力的结果将开发技术,使常规的染色质表观遗传学的nanoscape可视化。这将通过提供工具,试剂和协议来影响基础研究,这些工具,试剂和协议将在染色质研究中引发范式转变。此外,由于染色质修饰对于癌症、神经变性、胚胎发育、辅助生殖服务和未来的干细胞疗法具有真实的实际重要性,因此在单个活细胞中以纳米级分辨率快速成像表观遗传标记的能力具有从根本上改善与广泛的人类健康问题相关的诊断、分类和治疗方式的潜力。染色体上蛋白质的复杂修饰在调节细胞生理学和保持细胞正常和健康方面具有重要作用。在研究这些变化是如何工作的一个严重的限制是,我们不能看到它们,观察它们的结构组织,或者观察它们是如何来和去的。克服这一限制是一项艰巨的挑战,将对基础和临床健康科学产生巨大影响,包括癌症,神经退行性综合征和干细胞疗法。该项目将利用荧光显微镜的突破,以及最近对修饰的生物物理学的见解,开发技术,使研究人员能够在单个活细胞中首次以纳米级分辨率看到这些修饰的结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M MITCHELL SMITH其他文献

M MITCHELL SMITH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M MITCHELL SMITH', 18)}}的其他基金

Tandem Tudor Domain Probes for Nanoscale Epigenetic Decoding
用于纳米级表观遗传解码的串联 Tudor 结构域探针
  • 批准号:
    9007266
  • 财政年份:
    2015
  • 资助金额:
    $ 46.9万
  • 项目类别:
Tandem Tudor Domain Probes for Nanoscale Epigenetic Decoding
用于纳米级表观遗传解码的串联 Tudor 结构域探针
  • 批准号:
    9328107
  • 财政年份:
    2015
  • 资助金额:
    $ 46.9万
  • 项目类别:
Reading the histone code:nanoscale morphology of Epigneomic Histone Modifications
读取组蛋白密码:表观组蛋白修饰的纳米级形态
  • 批准号:
    7946374
  • 财政年份:
    2009
  • 资助金额:
    $ 46.9万
  • 项目类别:
Epigenetic Regulation of Gene Expression During Early Mouse Embryogenesis
小鼠早期胚胎发生过程中基因表达的表观遗传调控
  • 批准号:
    7333934
  • 财政年份:
    2007
  • 资助金额:
    $ 46.9万
  • 项目类别:
THE ROLE OF HISTONE H4 IN GENOME STABILITY
组蛋白 H4 在基因组稳定性中的作用
  • 批准号:
    6032924
  • 财政年份:
    2000
  • 资助金额:
    $ 46.9万
  • 项目类别:
THE ROLE OF HISTONE H4 IN GENOME STABILITY
组蛋白 H4 在基因组稳定性中的作用
  • 批准号:
    6627265
  • 财政年份:
    2000
  • 资助金额:
    $ 46.9万
  • 项目类别:
THE ROLE OF HISTONE H4 IN GENOME STABILITY
组蛋白 H4 在基因组稳定性中的作用
  • 批准号:
    6343092
  • 财政年份:
    2000
  • 资助金额:
    $ 46.9万
  • 项目类别:
The Role of Histone H4 in Genome Stability
组蛋白 H4 在基因组稳定性中的作用
  • 批准号:
    6734589
  • 财政年份:
    2000
  • 资助金额:
    $ 46.9万
  • 项目类别:
The Role of Histone H4 in Genome Stability
组蛋白 H4 在基因组稳定性中的作用
  • 批准号:
    7150600
  • 财政年份:
    2000
  • 资助金额:
    $ 46.9万
  • 项目类别:
The Role of MYST histone acetyltransferases in genome stability
MYST 组蛋白乙酰转移酶在基因组稳定性中的作用
  • 批准号:
    7661988
  • 财政年份:
    2000
  • 资助金额:
    $ 46.9万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 46.9万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
  • 批准号:
    10639161
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
  • 批准号:
    10752441
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
  • 批准号:
    10867639
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了