Tandem Tudor Domain Probes for Nanoscale Epigenetic Decoding
用于纳米级表观遗传解码的串联 Tudor 结构域探针
基本信息
- 批准号:9007266
- 负责人:
- 金额:$ 24.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAddressBindingBiochemicalBiological ModelsBioprobeBromodomainCell NucleusCell physiologyCellsChromatinChromatin StructureClinicalCodeColorComplexConflict (Psychology)CytologyDNA MethylationDNA RepairDefectDetectionDevelopmentDimensionsElectron MicroscopyEngineeringEnvironmentEnzymesEpigenetic ProcessEquationEuchromatinFluorescent ProbesGene ExpressionGenesGenomeHealth SciencesHeterochromatinHistonesImageImageryIn SituLabelLearningLysineMaintenanceMalignant NeoplasmsMeasuresMethylationMethyltransferaseMicroscopyModalityModelingModificationMolecular BiologyMolecular StructureMorphologyN-terminalNerve DegenerationNormal CellNuclearNucleoplasmNucleosomesPathologyPatternPeripheralPlayPolymerasePropertyProteinsRegulationReporterResearchResolutionRoleShapesSmall Interfering RNAStructureSyndromeSystemTestingTimeWorkbasecombinatorialdensitydesigndrug discoveryepigenetic regulationhistone methylationhuman diseaseimaging probeimprovedlight microscopymacromoleculemutantnanometernanoscalenovelpublic health relevancerelating to nervous systemresponsestem cell therapy
项目摘要
DESCRIPTION (provided by applicant): The modulation of heterochromatin structure and function plays a critical role in regulating gene expression, and defects in heterochromatin establishment and maintenance are associated with cancer, neural degeneracies, developmental pathologies, and other human diseases. However, many basic aspects of heterochromatin structure are poorly understood and are variously associated with conflicting models. This is due in large measure to experimental limitations. A major challenge in chromatin biology and molecular cytology is how to study the macromolecular structures and dynamics of specific regulated chromatin domains in single cells. We have developed model systems using super-resolution localization microscopy through which we can study specific epigenetic chromatin structures at nanoscale resolution. To date we have successfully applied this system to visualizing active chromatin domains by probing patterns of combinatorial lysine acetylations. Here we propose to extend this approach to develop genetically encoded bioprobes suitable for super-resolution microscopy that will recognize epigenetic features of heterochromatin and DNA damage repair foci. Our preliminary results support a focus on two tudor domain motifs and the research proposed here thus focuses on two principal aims: (1) We will exploit the properties of fluorescent probes based on the tandem tudor domain of Setdb1. Based on current epifluorescence images, we hypothesize that the structures seen reflect the properties of heterochromatin. We will visualize the morphologies of bound chromatin structures, measure their dimensions and densities, and compare the structures observed at the nuclear periphery, the perinucleolar compartment, and internal nucleoplasm. We will test the prediction that our reporters colocalize with known epigenetic marks of heterochromatin and with heterochromatin protein components. We will also test the prediction that reporter-bound chromatin responds in parallel with experimental perturbation of heterochromatin structures. (2) We will develop novel genetically encoded fluorescent probes based on the tandem tudor domain of UHRF1. We will visualize the morphologies of bound chromatin structures, measure their dimensions and densities, and compare the properties of structures within the heterochromatin subcompartments. We will manipulate these probes for multivalent recognition of H3K9me3 and the free N-terminal end of H3 by combining the tandem tudor domain and PHD domains for combinatorial recognition. Together, these aims will result in the development and characterization of novel probes for the super-resolution visualization of critical epigenetic heterochromatin environments labeled in situ. These fundamental advances, in turn, have the potential to radically improve strategies for drug discovery, and yield new treatment modalities for pathologies associated defects in chromatin and epigenetic regulation.
描述(由申请人提供):异染色质结构和功能的调节在调节基因表达中起关键作用,异染色质建立和维持的缺陷与癌症、神经退行性变、发育病理学和其他人类疾病相关。然而,异染色质结构的许多基本方面知之甚少,并与各种相互冲突的模型。这在很大程度上是由于实验的局限性。染色质生物学和分子细胞学的一个主要挑战是如何研究单个细胞中特定染色质调控结构域的大分子结构和动力学。我们已经开发了使用超分辨率定位显微镜的模型系统,通过该系统,我们可以在纳米级分辨率下研究特定的表观遗传染色质结构。到目前为止,我们已经成功地应用这个系统来可视化活性染色质结构域的探测模式的组合赖氨酸乙酰化。在这里,我们建议扩展这种方法,以开发适合超分辨率显微镜,将识别异染色质和DNA损伤修复灶的表观遗传特征的遗传编码的生物探针。我们的初步结果支持了对两个tudor结构域基序的关注,因此本文提出的研究集中在两个主要目标上:(1)我们将利用基于Setdb 1串联tudor结构域的荧光探针的性质。基于目前的荧光图像,我们假设所看到的结构反映了异染色质的性质。我们将可视化结合染色质结构的形态,测量它们的尺寸和密度,并比较在核周边,核仁周围区室和内部核质观察到的结构。我们将测试我们的报告基因与异染色质的已知表观遗传标记和异染色质蛋白组分共定位的预测。我们还将测试的预测,异染色质结合的染色质响应与异染色质结构的实验扰动平行。(2)我们将开发基于UHRF 1串联tudor结构域的新型基因编码荧光探针。我们将可视化结合染色质结构的形态,测量它们的尺寸和密度,并比较异染色质亚区室内结构的性质。我们将操纵这些探针的多价识别H3 K9 me 3和自由的N-末端的H3通过组合的串联tudor结构域和PHD结构域的组合识别。总之,这些目标将导致新的探针的开发和表征的超分辨率可视化的关键表观遗传异染色质环境标记在原位。反过来,这些根本性的进展有可能从根本上改善药物发现的策略,并为染色质和表观遗传调控中的病理相关缺陷产生新的治疗方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M MITCHELL SMITH其他文献
M MITCHELL SMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M MITCHELL SMITH', 18)}}的其他基金
Tandem Tudor Domain Probes for Nanoscale Epigenetic Decoding
用于纳米级表观遗传解码的串联 Tudor 结构域探针
- 批准号:
9328107 - 财政年份:2015
- 资助金额:
$ 24.72万 - 项目类别:
Reading the histone code:nanoscale morphology of Epigneomic Histone Modifications
读取组蛋白密码:表观组蛋白修饰的纳米级形态
- 批准号:
7821524 - 财政年份:2009
- 资助金额:
$ 24.72万 - 项目类别:
Reading the histone code:nanoscale morphology of Epigneomic Histone Modifications
读取组蛋白密码:表观组蛋白修饰的纳米级形态
- 批准号:
7946374 - 财政年份:2009
- 资助金额:
$ 24.72万 - 项目类别:
Epigenetic Regulation of Gene Expression During Early Mouse Embryogenesis
小鼠早期胚胎发生过程中基因表达的表观遗传调控
- 批准号:
7333934 - 财政年份:2007
- 资助金额:
$ 24.72万 - 项目类别:
THE ROLE OF HISTONE H4 IN GENOME STABILITY
组蛋白 H4 在基因组稳定性中的作用
- 批准号:
6032924 - 财政年份:2000
- 资助金额:
$ 24.72万 - 项目类别:
THE ROLE OF HISTONE H4 IN GENOME STABILITY
组蛋白 H4 在基因组稳定性中的作用
- 批准号:
6627265 - 财政年份:2000
- 资助金额:
$ 24.72万 - 项目类别:
The Role of Histone H4 in Genome Stability
组蛋白 H4 在基因组稳定性中的作用
- 批准号:
6734589 - 财政年份:2000
- 资助金额:
$ 24.72万 - 项目类别:
THE ROLE OF HISTONE H4 IN GENOME STABILITY
组蛋白 H4 在基因组稳定性中的作用
- 批准号:
6343092 - 财政年份:2000
- 资助金额:
$ 24.72万 - 项目类别:
The Role of Histone H4 in Genome Stability
组蛋白 H4 在基因组稳定性中的作用
- 批准号:
7150600 - 财政年份:2000
- 资助金额:
$ 24.72万 - 项目类别:
The Role of MYST histone acetyltransferases in genome stability
MYST 组蛋白乙酰转移酶在基因组稳定性中的作用
- 批准号:
7661988 - 财政年份:2000
- 资助金额:
$ 24.72万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.72万 - 项目类别:
Research Grant