Computational and Cell Culture Models for Mucus Clearance
粘液清除的计算和细胞培养模型
基本信息
- 批准号:7838082
- 负责人:
- 金额:$ 49.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-21 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAirAllergensAnimal ModelAnimalsAreaAsthmaAutomationBacterial InfectionsBenchmarkingBiochemicalBiochemistryBiological AssayBiological ModelsBiophysicsBreathingCell Culture SystemCell Culture TechniquesCell membraneCell surfaceCellsCerealsChemicalsChronicChronic Obstructive Airway DiseaseCiliaComplementComplexComputer SimulationComputersCoughingCoupledCouplingCystic FibrosisDevelopmentDiffuseDiseaseEffectivenessEnvironmentEnvironmental MonitoringEpithelial CellsFaceFailureFloodsForce of GravityGenerationsGoalsGrantGrowthHealthHeightHereditary DiseaseHumanIn VitroInfectionInfectious AgentLinkLiquid substanceLiverLungMathematicsMeasurementMembraneMicrofluidicsMicroscopeModelingMucociliary ClearanceMucous body substanceNatural ImmunityOrganParticulatePhysicsPositioning AttributeRaceRegulationRelianceResearchResearch PersonnelRespiratory physiologyRheologyRoleScreening procedureSpeedSterilityStructureStructure of parenchyma of lungSurfaceSystemTechnologyTestingTheoretical modelThickTimeToxic Environmental SubstancesToxic effectToxicant exposureToxicity TestsToxinTubeVisionassaultassay developmentbasebody systemcell typedensitydesigneffective therapyenvironmental stressorhazardhigh throughput screeninghuman stem cellsimprovedinterfacialmathematical modelnovelpathogenpredictive modelingpreventresearch studyresponseshear stresssuccessvirtualviscoelasticity
项目摘要
DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (06) Enabling Technologies and specific Challenge Topic 06-ES-102*: 3-D or virtual models to reduce use of animals in research: Creation of miniature multi-cellular organs for high throughput screening for chemical toxicity testing. Development of novel micro-scale systems of multiple cell types that replicate the macro-scale structure and function of major organ systems in response to environmental stressors linked with development of computational models of organ system function can accelerate testing of the multitude of chemicals in our environment for toxicity. Research which furthers the generation of 3-D biological models will provide new assays for rapid screening of toxicity in organs such as the lung and liver. Cell types, such as human stem cells, used in these systems would reduce the use of animals and improve our assessment of chemical hazards in the environment. Contact: Dr. David Balshaw, balshaw@niehs.nih.gov, (919) 541-2448 Title: Computational and Cell Culture Models of Mucus Clearance. Summary: The lung inhales over 1 million infectious and toxic agents each day. The defense of the lung begins with the layer of mucus that lines the epithelial cell layer. When these assaults land at the mucus/air inter- face, the race between infection and clearance begins. The particulates, pathogens and allergens are in a diffusive race for the cell membrane before they can be cleared by the entraining flow of mucus. To provide effective clearance, the body must accomplish several goals. First it must provide the barrier layer of mucus with a height and viscoelasticity that impose a significant transit time for the infectious agents. Second, propulsion mechanisms through cilia or airflow must move the mucus with a speed that clears the agents before they can diffuse to the cell membrane. Third, the viscoelasticity of the mucus must be sufficient to prevent flooding of the airway, yet be fluid enough to allow for transport by cilia and airflow. The goal of this project is to generate computational and cell culture based models for mucus clearance. Since failure of clearance can be under- stood as the first step to a cascade of lung failure scenarios, the establishment of effective model systems for toxicity testing is critical. The use of a cell culture based model allows the inclusion of complex biochemical and immunological responses. The use of ciliated cultures that have been shown to generate and maintain appropriate mucus layers, and to generate a coordinated array of cilia for propulsion, is the starting point for our model system. We will generate the first ciliated cell culture systems that place the cells into a geometry that replicates essential features of the lung: directional, linear flow with converging cross section that can be challenged for vertical transport against gravity. This model system will have the potential to act as a sensitive as- say for environmental effectors that compromise mucus height regulation, mucus rheology, cilia density and co- ordination. We will further develop the assay within a microfluidic system that has twelve isolated assays operating in parallel. This will bring this sophisticated cell based assay to medium-throughput screening. Beyond biophysical models, we require a computational model so that we may predict the consequences of environmental assaults and design effective therapies. We will develop theoretical models that in- corporate the propulsion mechanisms of cilia and of airflow. The latter is operative during effective clearance maneuvers such as cough, and it is understood that even in the absence of cilia propulsion, cough can maintain sterile airways. However, there is currently no predictive model of the role of mucus rheology and layer thickness, cilia effectiveness and airflow in producing sufficient clearance to maintain healthy lung function. By combining a team of researchers from Applied Mathematics, Physics, Biochemistry and Biophysics, and the UNC Cystic Fibrosis Center, the goal of this project is to develop cell-based biophysical assays that can test environmental assaults for their role in compromising mucus clearance, and use them to establish a computational model for clearance that will have the potential for creating in-silico testing of toxins. The goal of this targeted two year project is to jump-start technical advances, in cell cultures and mathematical modeling, that will contribute to the vision of effective, efficient and physiologically accurate toxicity assays. The availability of a cell culture-based clearance assay coupled with an in- silico computational model will reduce the reliance on animal models and more accurately predict the consequences of toxins on human health.
描述(由申请人提供):本申请涉及广泛的挑战领域(06)启用技术和特定挑战主题06- es -102*:减少研究中动物使用的3d或虚拟模型:用于高通量筛选化学毒性测试的微型多细胞器官的创建。多种细胞类型的新型微尺度系统的发展,复制了主要器官系统的宏观结构和功能,以响应环境压力,与器官系统功能的计算模型的发展相联系,可以加速对我们环境中大量化学物质的毒性测试。进一步生成三维生物模型的研究将为快速筛选肺和肝等器官的毒性提供新的分析方法。在这些系统中使用的细胞类型,如人类干细胞,将减少对动物的使用,并改善我们对环境中化学危害的评估。联系人:Dr. David Balshaw, balshaw@niehs.nih.gov,(919) 541-2448标题:黏液清除的计算和细胞培养模型。总结:肺每天吸入超过100万的传染性和毒性物质。肺的防御始于上皮细胞层的黏液层。当这些攻击到达黏液/空气界面时,感染和清除之间的竞赛就开始了。微粒、病原体和过敏原在被黏液的夹带流清除之前,都在向细胞膜扩散。为了提供有效的清除,身体必须完成几个目标。首先,它必须提供具有高度和粘弹性的粘液屏障层,从而使感染因子有相当长的传播时间。其次,通过纤毛或气流的推进机制必须在病原体扩散到细胞膜之前以清除它们的速度移动粘液。第三,黏液的粘弹性必须足以防止气道充血,但又要有足够的流动性,以允许纤毛和气流运输。这个项目的目标是产生基于计算和细胞培养的粘液清除模型。由于清除失败可以被理解为一连串肺衰竭情景的第一步,因此建立有效的毒性测试模型系统至关重要。使用基于细胞培养的模型允许包含复杂的生化和免疫反应。纤毛培养物的使用已经被证明可以产生和维持适当的黏液层,并产生一组协调的纤毛来推进,这是我们模型系统的起点。我们将生成第一个纤毛细胞培养系统,该系统将细胞置于复制肺基本特征的几何形状中:具有汇聚横截面的定向线性流动,可以挑战重力垂直运输。这个模型系统将有潜力作为一个敏感的环境效应,比如损害粘液高度调节,粘液流变,纤毛密度和协调。我们将在一个微流体系统中进一步发展该分析,该系统有12个分离分析并行操作。这将使这种复杂的基于细胞的检测进入中等通量筛选阶段。除了生物物理模型,我们还需要一个计算模型,这样我们就可以预测环境攻击的后果并设计有效的治疗方法。我们将建立理论模型,结合纤毛和气流的推进机制。后者在咳嗽等有效的清除动作中起作用,并且可以理解,即使在没有纤毛推进的情况下,咳嗽也可以维持无菌气道。然而,目前还没有预测黏液流变学和层厚度、纤毛有效性和气流在产生足够的清除率以维持健康肺功能中的作用的模型。通过将来自应用数学、物理、生物化学和生物物理学以及北卡罗来纳大学囊性纤维化中心的研究人员团队结合起来,该项目的目标是开发基于细胞的生物物理分析方法,可以测试环境攻击对粘液清除的影响,并利用它们建立一个清除的计算模型,该模型将有可能创建毒素的计算机测试。这个有针对性的两年项目的目标是启动细胞培养和数学建模方面的技术进步,这将有助于实现有效、高效和生理上准确的毒性分析的愿景。基于细胞培养的清除试验加上计算机计算模型的可用性将减少对动物模型的依赖,并更准确地预测毒素对人类健康的后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD SUPERFINE其他文献
RICHARD SUPERFINE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD SUPERFINE', 18)}}的其他基金
Microactuated Rheometer for Point of Care Coagulopathy Applications
适用于护理点凝血病应用的微驱动流变仪
- 批准号:
8301848 - 财政年份:2012
- 资助金额:
$ 49.82万 - 项目类别:
Microactuated Rheometer for Point of Care Coagulopathy Applications
适用于护理点凝血病应用的微驱动流变仪
- 批准号:
8446335 - 财政年份:2012
- 资助金额:
$ 49.82万 - 项目类别:
Array Microscope Assay for Cancer Cell Mechanics
癌细胞力学的阵列显微镜分析
- 批准号:
8154990 - 财政年份:2011
- 资助金额:
$ 49.82万 - 项目类别:
Array Microscope Assay for Cancer Cell Mechanics
癌细胞力学的阵列显微镜分析
- 批准号:
8534049 - 财政年份:2011
- 资助金额:
$ 49.82万 - 项目类别:
Array Microscope Assay for Cancer Cell Mechanics
癌细胞力学的阵列显微镜分析
- 批准号:
8333396 - 财政年份:2011
- 资助金额:
$ 49.82万 - 项目类别:
Computational and Cell Culture Models for Mucus Clearance
粘液清除的计算和细胞培养模型
- 批准号:
7936939 - 财政年份:2009
- 资助金额:
$ 49.82万 - 项目类别:
Virtual Lung Project: Integrated Modeling of Epithelial
虚拟肺项目:上皮细胞综合建模
- 批准号:
7125868 - 财政年份:2006
- 资助金额:
$ 49.82万 - 项目类别:
The Virtual Lung Project: Integrated Modeling of Epithelial Fluid Flows
虚拟肺项目:上皮液流的集成建模
- 批准号:
7259472 - 财政年份:2006
- 资助金额:
$ 49.82万 - 项目类别:
The Virtual Lung Project: Integrated Modeling of Epithelial Fluid Flows
虚拟肺项目:上皮液流的集成建模
- 批准号:
7646428 - 财政年份:2006
- 资助金额:
$ 49.82万 - 项目类别:
The Virtual Lung Project: Integrated Modeling of Epithelial Fluid Flows
虚拟肺项目:上皮液流的集成建模
- 批准号:
7670762 - 财政年份:2006
- 资助金额:
$ 49.82万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 49.82万 - 项目类别:
Research Grant