Water, protons, and ions biomolecular systems

水、质子和离子生物分子系统

基本信息

项目摘要

Water plays a central role in the stability, dynamics, and function of biomolecules. Through the hydrophobic effect and hydrogen bond interactions, water is a major factor in the folding of proteins. In many enzymes, it participates directly in the catalytic function. In particular, water in the protein interior often mediates the transfer of protons between the solvent medium and the active site. Such water, often confined into relatively nonpolar pores and cavities of nanoscopic dimensions, exhibits highly unusual properties, such as high water mobility, high proton conductivity, or sharp transitions between filled and empty states. Proteins exploit these unusual properties of confined water in their biological function, e.g., to ensure rapid water flow in aquaporins, or to gate proton flow in proton pumps and enzymes. 1D water wires: In collaboration with Drs. Dellago and Kofinger from the University of Vienna, Austria, we performed studies of one-dimensional water wires. Such wires are important elements of biological water channels and proton conduction wires in proteins. We showed that a dipole lattice model accurately recovers key properties of 1D confined water when compared to atomically detailed simulations. In a major reduction in computational complexity, we represented the dipole model in terms of effective Coulombic charges, which allowed us to study pores of macroscopic lengths in equilibrium with a water bath. At ambient conditions, the water chains filling the tube are essentially continuous up to macroscopic dimensions. In the filled state, the chains of water molecules in the tube remain dipole-ordered up to macroscopic lengths of 0.1 mm, and the dipolar order is estimated to persist for times up to 0.1 s. The observed dipolar order in continuous water chains is a precondition for the use of nanoconfined 1D water as mediator of fast long-range proton transport in proteins and fuel cells. Water in nanoconfinement: In collaboration with Prof. Garde (Rensselaer Polytechnic Institute) and Prof. Rasaiah (University of Maine), we have explored the highly unusual properties of water molecules confined to nonpolar pores and cavities of nanoscopic dimensions. Water filling of these molecularly tight spaces is strongly cooperative, resulting in the possible coexistence of filled and empty states and sensitivity to tiny perturbations of the pore polarity and solvent conditions. Confined water molecules form tightly hydrogen-bonded wires or clusters. Weak attractions to the confining wall and strong interactions between water molecules permit exceptionally rapid water flow, exceeding expectations from macroscopic hydrodynamics by several orders of magnitude. The proton mobility along 1D water wires also substantially exceeds that in the bulk. Proteins appear to exploit these unusual properties of confined water in their biological function (e.g., to ensure rapid water flow in aquaporins or to gate proton flow in proton pumps and enzymes). The unusual properties of water in nonpolar confinement are also relevant to the design of novel nanofluidic and molecular separation devices or fuel cells. Function of cytochrome c oxidase. Aerobic life is based on a molecular machinery that utilizes oxygen as a terminal electron sink. The membrane-bound cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water in mitochondria and many bacteria. The energy released in this reaction is conserved by pumping protons across the mitochondrial or bacterial membrane, creating an electrochemical proton gradient that drives production of ATP. In collaboration with Drs. Kaila and Wikstrom (University of Helsinki, Finland) we explored by molecular dynamics simulations how the protons pumped by CcO are prevented from flowing backwards during the process. We found that a conserved glutamic acid 242 near the active site of CcO undergoes a protonation state-dependent conformational change, which provides a valve in the pumping mechanism. The valve ensures that at any point in time, the proton pathway across the membrane is effectively discontinuous, thereby preventing thermodynamically favorable proton back-leakage while maintaining an overall high efficiency of proton translocation. Suppression of proton leakage is particularly important in mitochondria under physiological conditions, where production of ATP takes place in the presence of a high electrochemical proton gradient. Molecular transport in nanochannels: The cell provides a highly crowded environment. This crowding strongly affects the diffusive dynamics of biomolecules. However, we are still lacking a theory of diffusion in crowded environments. In collaboration with Dr. Mittal (NIDDK, NIH) and Dr. Truskett (University of Texas at Austin), we studied the diffusive dynamics of a fluid in the confined between parallel smooth hard walls. We found an unexpected correlation between the position-dependent diffusion coefficient normal to the walls and the local packing density. We could explain this positive correlation by the fact that for repulsion-dominated fluids high density regions also have the largest available volume, consistent with the observed fast local diffusivity. Importantly, we confirmed that the diffusion coefficients strongly deviate from bulk fluid behavior, making corrections necessary in studies of diffusion in crowded environments like those of cells and their organelles.
水在生物分子的稳定性、动力学和功能中起着核心作用。通过疏水效应和氢键相互作用,水是蛋白质折叠的主要因素。在许多酶中,它直接参与催化功能。特别是,蛋白质内部的水经常介导质子在溶剂介质和活性位点之间的转移。这种水通常被限制在相对非极性的孔隙和纳米尺度的空腔中,表现出非常不寻常的性质,如高水迁移率,高质子电导率,或在充满和空状态之间的急剧转变。蛋白质利用封闭水的这些不寻常的特性来发挥其生物功能,例如,确保水通道蛋白中的水快速流动,或控制质子泵和酶中的质子流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerhard Hummer其他文献

Gerhard Hummer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerhard Hummer', 18)}}的其他基金

Theory and simulation of protein dynamics, folding, and function
蛋白质动力学、折叠和功能的理论和模拟
  • 批准号:
    8349698
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Water, protons, and ions biomolecular systems
水、质子和离子生物分子系统
  • 批准号:
    8349699
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Water, protons, and ions biomolecular systems
水、质子和离子生物分子系统
  • 批准号:
    7967267
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Theory of single-molecule biophysics
单分子生物物理学理论
  • 批准号:
    8553414
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Theory of single-molecule biophysics
单分子生物物理学理论
  • 批准号:
    8148709
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Theory of single-molecule biophysics
单分子生物物理学理论
  • 批准号:
    7967269
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Water, protons, and ions biomolecular systems
水、质子和离子生物分子系统
  • 批准号:
    8553413
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Theory of single-molecule biophysics
单分子生物物理学理论
  • 批准号:
    8349700
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Theory and simulation of protein dynamics, folding, and function
蛋白质动力学、折叠和功能的理论和模拟
  • 批准号:
    8741377
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:
Water, protons, and ions biomolecular systems
水、质子和离子生物分子系统
  • 批准号:
    8148708
  • 财政年份:
  • 资助金额:
    $ 28.7万
  • 项目类别:

相似海外基金

Targeting aerobic glycolysis via hexokinase 2 inhibition in Natural Killer T cell lymphomas
通过抑制己糖激酶 2 靶向自然杀伤 T 细胞淋巴瘤中的有氧糖酵解
  • 批准号:
    23K07830
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Late Metal Catalytic Systems for Aerobic Partial Oxidation of Alkanes
开发烷烃有氧部分氧化的后金属催化系统
  • 批准号:
    2247667
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
  • 批准号:
    10696409
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
  • 批准号:
    10581973
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
MIND Foods and Aerobic Training in Black Adults with HTN: An ADRD Prevention Pilot RCT (MAT)
MIND 食品和患有 HTN 的黑人成人的有氧训练:ADRD 预防试点随机对照试验 (MAT)
  • 批准号:
    10585366
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Investigating the physical and chemical controls on aerobic methane oxidation
研究好氧甲烷氧化的物理和化学控制
  • 批准号:
    2241873
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Pro-Resolving Inflammatory Mediators in Neurovascular Gains in Aerobic Training; a phase 2, double-blind, randomized placebo-controlled trial (PRIMiNG-AT2)
有氧训练中促进神经血管增益的炎症介质的消除;
  • 批准号:
    485524
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Operating Grants
Effect of aerobic exercise-induced sleep changes on arterial stiffness associated with postprandial hyperglycemia.
有氧运动引起的睡眠变化对与餐后高血糖相关的动脉僵硬度的影响。
  • 批准号:
    23K10645
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
  • 批准号:
    10717825
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
Supporting Aging through Green Exercise (SAGE): Comparing the cognitive effects of outdoor versus indoor aerobic exercise in older adults with mild cognitive impairment: A proof-of-concept randomized controlled trial
通过绿色运动支持老龄化 (SAGE):比较户外与室内有氧运动对患有轻度认知障碍的老年人的认知效果:概念验证随机对照试验
  • 批准号:
    495185
  • 财政年份:
    2023
  • 资助金额:
    $ 28.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了