Study of nucleic acid structure by novel NMR methods

通过新型 NMR 方法研究核酸结构

基本信息

项目摘要

A procedure has been developed for refinement of homology models by addition of sparse experimental data. The method is demonstrated for determining the structure of E.Coli tRNAVal, originally modeled after the X-ray structure of yeast tRNAPhe, but refined using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm has been developed for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N-HN RDCs measured with Pf1 phage alignment, and 20 imino N-HN RDCs obtained from magnetic field dependent alignment of tRNAVal. The refinement strategy aims to largely retain the local geometry of the 58% identical tRNAPhe by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Qfree = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNAPhe, in agreement with previous NMR-based tRNAVal models.
一个程序已经开发了细化的同源性模型,增加了稀疏的实验数据。该方法被证明用于确定大肠杆菌tRNAVal的结构,最初是根据酵母tRNAPhe的X射线结构建模的,但使用实验残留偶极耦合(RDC)和小角X射线散射(SAXS)数据进行了改进。已经开发了球形采样算法用于针对SAXS数据的细化,其不需要全局近似,这对于其中这种近似不太合适的核酸特别重要。该算法的速度大大提高,也使其适用于蛋白质。 除了SAXS数据外,结构精修还采用了稀疏的NMR数据集,该数据集由Pf 1噬菌体比对测量的24个亚氨基N-HN RDC和从tRNAVal的磁场依赖性比对获得的20个亚氨基N-HN RDC组成。改进策略旨在通过确保核糖磷酸骨架和保守碱基对的短重叠片段的原子坐标保持接近起始模型的原子坐标,在很大程度上保留58%相同的tRNAPhe的局部几何形状。使用XPLOR-NIH或CNS软件包中的非晶体学对称性(NCS)项强制执行局部坐标约束,同时仍允许相邻节段的适度移动。 RDC主要驱动螺旋臂的相对取向,而SAXS约束确保与实验散射数据兼容的整体分子形状。得到的结构表现出良好的交叉验证统计(折刀Qfree = 14%的Pf 1 RDC,相比之下,25%的起始模型),并表现出更大的角度之间的两个螺旋臂比观察到的X射线结构的tRNAPhe,与以前的NMR为基础的tRNAVal模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ad - Bax其他文献

Ad - Bax的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ad - Bax', 18)}}的其他基金

DE NOVO PROTEIN STRUCTURE GENERATION FROM INCOMPLETE CHEMICAL SHIFT ASSIGNMENTS
不完整的化学位移分配从头生成蛋白质结构
  • 批准号:
    7957681
  • 财政年份:
    2009
  • 资助金额:
    $ 30.49万
  • 项目类别:
NUCLEAR MAGNETIC RESONANCE--NEW METHODS AND MOLECULAR STRUCTURE DETERMINATION
核磁共振--分子结构测定的新方法
  • 批准号:
    6432089
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Nuclear Magnetic Resonance--new Methods And Molecular St
核磁共振--新方法与分子研究
  • 批准号:
    6546637
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Structure of the TolR periplasmic domain
TolR 周质结构域的结构
  • 批准号:
    7593497
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Nuclear Magnetic Resonance--new Methods And Molecular St
核磁共振--新方法与分子研究
  • 批准号:
    7152050
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Nuclear Magnetic Resonance--new Methods And Molecular St
核磁共振--新方法与分子研究
  • 批准号:
    6810190
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Structural study of the Ly49A T cell recognition domain
Ly49A T细胞识别域的结构研究
  • 批准号:
    7593498
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Nuclear Magnetic Resonance--new Methods And Molecular St
核磁共振--新方法与分子研究
  • 批准号:
    6673405
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Nuclear Magnetic Resonance--new Methods And Molecular St
核磁共振--新方法与分子研究
  • 批准号:
    7336246
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:
Study of membrane protein structure by NMR spectroscopy: the KcsA channel
通过 NMR 波谱研究膜蛋白结构:KcsA 通道
  • 批准号:
    7593482
  • 财政年份:
  • 资助金额:
    $ 30.49万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 30.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了