ECM compliance and cell cycle control

ECM 合规性和细胞周期控制

基本信息

  • 批准号:
    7737418
  • 负责人:
  • 金额:
    $ 44.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-24 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The extracellular matrix (ECM) controls a large number of physiological processes including differentiation, apoptosis, and proliferation. Moreover, changes in ECM composition and tissue stiffness are hallmarks of diseases as diverse as fibrosis, cancer, and atherosclerosis. In large part, the ECM regulates cellular function by binding to and activating the integrin family of surface receptors. The necessity of integrin signaling for G1 phase cell cycle progression is now well established, but the approaches that have been used to document ECM/integrin effects typically rely on inhibition of cell adhesion, actin polymerization, or Rho-Rho kinase signaling using cells cultured on rigid plastic or glass surfaces that do not model the deformability of physiological tissue. Since a hallmark of cell-ECM interactions is the ability to assess extracellular stiffness, ECM compliance may be an important determinant of downstream signaling pathways. We have used deformable ECM-coated hydrogels matched to the physiological compliance that cells encounter in vivo to determine how ECM/integrin signaling regulates proliferation physiologically. Our preliminary data show that integrin-dependent cell cycle events have distinct compliance thresholds, and that the tissue compliance characteristic of mammary glands and aortae acts as a cell cycle inhibitor through a selective effect on cyclin D1. The compliance-regulated signaling pathway involves FAK, but is distinguishable from the signaling pathways that we and others have previously implicated in integrin-dependent induction of cyclin D1. We now propose three aims to determine how physiologically relevant changes in ECM compliance regulate the cell cycle. Aim 1 will use ECM-coated hydrogels to determine the signaling mechanisms by which ECM compliance and FAK regulate cyclin D1 gene expression in MEFs and freshly isolated mouse vascular smooth muscle cells (VSMCs). Aim 2 will use the same experimental systems to study a novel and unexpected post- translational effect of ECM compliance on the function of cyclin D1 and activation of cdk4/6. Aim 3 will then test the roles of FAK on tissue compliance and VSMC proliferation in vivo, using newly acquired methodology for fine-wire vascular injury in the mouse. Our combined use of bioengineered substrata, biophysical measurements of tissue elasticity, cell and molecular biology, and in vivo mouse modeling provides us with a powerful interdisciplinary approach for determining how ECM compliance controls integrin signaling to the cell cycle. Since the ECM remodels at sites of vascular injury, the results from these studies may also have important implications for understanding how changes in tissue compliance affect VSMC proliferation in atherosclerosis and restenosis. PUBLIC HEALTH RELEVANCE: One of the main limitations of modern cell biology is that cells are usually cultured on a plastic surface which is completely rigid rather than its native biological substratum which is flexible. The flexibility of an underlying substratum (its "compliance") has profound effects on cellular architecture, differentiation, and proliferation, raising the possibility that some of the signaling, differentiation, and proliferative responses identified in traditional culture may not be relevant in vivo. We have recently adopted a culture system that gives us complete control of substratum compliance and allows us to match the compliance of cultured cells to the compliance of their native tissues. Using this system, we show that physiological tissue compliance is a negative regulator of the cell cycle in vascular smooth muscle cells. We now propose to determine the mechanism underlying this effect. Since the ultimate test of biological relevance must be made in a living organism, this application also exploit a newly acquired mouse model of vascular injury to test the biological relevance of the signaling events that we characterize in compliance-appropriate culture. In addition to the advance in basic cell biology, our proposed work has strong biomedical relevance because smooth muscle cell proliferation and vascular remodeling are critical aspects of both atherosclerosis and restenosis (smooth muscle cell proliferation after balloon angioplasty). Thus, understanding how physiological ECM compliance inhibits vascular smooth muscle cell proliferation, and how this control can be overcome by pathological stiffening of arteries, has the potential to be a significant biomedical advance.
描述(申请人提供):细胞外基质(ECM)控制包括分化、凋亡和增殖在内的大量生理过程。此外,ECM成分和组织硬度的变化是各种疾病的特征,如纤维化、癌症和动脉粥样硬化。在很大程度上,ECM通过与表面受体整合素家族结合并激活来调节细胞功能。整合素信号对G1期细胞周期进程的必要性现已得到证实,但用于记录ECM/整合素效应的方法通常依赖于使用培养在硬质塑料或玻璃表面的细胞抑制细胞黏附、肌动蛋白聚合或Rho-Rho激酶信号,这些表面不能模拟生理组织的变形能力。由于细胞-细胞外基质相互作用的标志是评估细胞外硬度的能力,因此细胞外基质顺应性可能是下游信号通路的重要决定因素。我们使用了可变形的细胞外基质涂层水凝胶,与细胞在体内遇到的生理顺应性相匹配,以确定细胞外基质/整合素信号如何在生理上调节增殖。我们的初步数据显示,整合素依赖的细胞周期事件具有明显的顺应性阈值,乳腺和主动脉的组织顺应性特征通过对细胞周期蛋白D1的选择性作用而起到细胞周期抑制的作用。顺应性调节的信号通路涉及FAK,但与我们和其他人先前涉及的整合素依赖性诱导细胞周期蛋白D1的信号通路不同。我们现在提出三个目标来确定ECM顺应性的生理变化如何调节细胞周期。目的1利用细胞外基质包被的水凝胶,研究细胞外基质顺应性和FAK调节MEF和新鲜分离的小鼠血管平滑肌细胞(VSMCs)细胞周期蛋白D1基因表达的信号机制。Aim 2将使用相同的实验系统研究ECM顺应性对细胞周期蛋白D1功能和CDK4/6激活的一种新的和意想不到的翻译后效应。Aim 3将使用新获得的小鼠细线血管损伤的方法学,在体内测试FAK对组织顺应性和VSMC增殖的作用。我们结合使用生物工程底物、组织弹性的生物物理测量、细胞和分子生物学以及活体小鼠建模,为我们提供了一种强大的跨学科方法来确定ECM顺应性如何控制细胞周期的整合素信号。由于ECM在血管损伤部位发生重塑,这些研究的结果也可能对理解组织顺应性的变化如何影响动脉粥样硬化和再狭窄中的VSMC增殖具有重要意义。与公共健康相关:现代细胞生物学的主要局限性之一是,细胞通常培养在完全坚硬的塑料表面上,而不是其自然的生物基质上,后者是灵活的。基础底物的灵活性(其“顺应性”)对细胞结构、分化和增殖有深远的影响,增加了传统培养中确定的一些信号、分化和增殖反应可能与体内无关的可能性。我们最近采用了一种培养系统,使我们能够完全控制基质顺应性,并允许我们将培养细胞的顺应性与其天然组织的顺应性相匹配。利用这一系统,我们证明了生理组织顺应性是血管平滑肌细胞细胞周期的负调节因子。我们现在建议确定这种效应背后的机制。由于生物相关性的最终测试必须在活的有机体中进行,因此该应用程序还利用新获得的血管损伤小鼠模型来测试我们在顺应性适当的培养中表征的信号事件的生物相关性。除了基础细胞生物学方面的进展外,我们提出的工作还具有很强的生物医学相关性,因为平滑肌细胞增殖和血管重构是动脉粥样硬化和再狭窄(球囊血管成形术后平滑肌细胞增殖)的关键方面。因此,了解生理性ECM顺应性如何抑制血管平滑肌细胞的增殖,以及这种控制如何被动脉的病理性硬化所克服,有可能成为生物医学的重大进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Assoian其他文献

Richard Assoian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Assoian', 18)}}的其他基金

Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
  • 批准号:
    10368103
  • 财政年份:
    2019
  • 资助金额:
    $ 44.92万
  • 项目类别:
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
  • 批准号:
    10609809
  • 财政年份:
    2019
  • 资助金额:
    $ 44.92万
  • 项目类别:
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
  • 批准号:
    9816369
  • 财政年份:
    2019
  • 资助金额:
    $ 44.92万
  • 项目类别:
ECM stiffness, mechanotransduction, and cell cycling
ECM 硬度、力转导和细胞循环
  • 批准号:
    9978116
  • 财政年份:
    2018
  • 资助金额:
    $ 44.92万
  • 项目类别:
ECM stiffness, mechanotransduction, and cell cycling
ECM 硬度、力转导和细胞循环
  • 批准号:
    10210426
  • 财政年份:
    2018
  • 资助金额:
    $ 44.92万
  • 项目类别:
Aging, gender and arterial stiffness in atherosclerosis
动脉粥样硬化中的衰老、性别和动脉僵硬度
  • 批准号:
    8668406
  • 财政年份:
    2014
  • 资助金额:
    $ 44.92万
  • 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
  • 批准号:
    8919442
  • 财政年份:
    2014
  • 资助金额:
    $ 44.92万
  • 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
  • 批准号:
    8771694
  • 财政年份:
    2014
  • 资助金额:
    $ 44.92万
  • 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
  • 批准号:
    9081644
  • 财政年份:
    2014
  • 资助金额:
    $ 44.92万
  • 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
  • 批准号:
    9305135
  • 财政年份:
    2014
  • 资助金额:
    $ 44.92万
  • 项目类别:

相似海外基金

Novel Polymerization System of Acrylamides in the Presence of the Polymers having the Lower Critical Solution Temperature in Water
具有较低水中临界溶液温度的聚合物存在下的新型丙烯酰胺聚合体系
  • 批准号:
    14550841
  • 财政年份:
    2002
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了