Integrated discovery and hypothesis testing of new associations in rare diseases
罕见疾病新关联的综合发现和假设检验
基本信息
- 批准号:7727710
- 负责人:
- 金额:$ 53.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAffectCase StudyCellsClinicalCodeComputer softwareCuriositiesDataData SetDatabasesDiseaseElectronic Health RecordElectronicsEnvironmental Risk FactorEvaluationFrequenciesGoalsHandHospitalsImmunocompromised HostIncidenceIndividualInequalityInformaticsInformation TheoryKaposi SarcomaKidney DiseasesLaboratoriesLinkLiteratureLiver diseasesMethodologyMethodsMiningNatural Language ProcessingNatureNew YorkPatientsPatternPersonsPopulationPresbyterian ChurchProcessPubMedRare DiseasesRecordsReportingResearchSourceStatistical MethodsStratificationStreamStressSystemTechniquesTestingTextTransplantationUnified Medical Language SystemUnited States National Institutes of HealthUnited States National Library of MedicineVirusWorkWritingabstractingbaseblinddata miningforgettingimprovedinnovationinterdisciplinary approachlongitudinal databasenovelpathogenrepositoryresearch studystatisticstext searchingtoolvirologyweb site
项目摘要
DESCRIPTION (provided by applicant): Rare diseases are studied in isolated laboratories, forgotten by main stream pharmacological companies, and considered almost academic curiosities. Finding variables that correlate/cause rare diseases (a condition is rare when it affects less than 1 person per 2,000) is a difficult task. The low number of cases and the sparse nature of the reports make it difficult to obtain significant/meaningful statistical results. There are two ways to avoid these problems. The first is to integrate reported cases and associations to generate enough statistical power. The second way is to have an independent data set, big enough to cover rare cases. Each of the two methods has intrinsic problems. For instance, the search in the literature puts together different studies, each of them with their own biases in population, methodology and objectives. On the other hand, blind searches for associations in big databases introduce a large number of false positives due to multiple hypothesis testing.
These problems could be avoided by developing innovative methods that allow the integration of information and methodologies in the literature and longitudinal databases. To achieve this goal, we propose a team that combines expertise in natural language processing systems (Carol Friedman), electronic health records (George Hripcsak), statistics in combined databases and computational virology (Raul Rabadan). This team will generate an interdisciplinary approach to mine and integrate the literature and the dataset collected at Columbia/New York Presbyterian hospital. Identifying unusual correlations in rare diseases is the first step to understanding the origin of the diseases and to finding a cure for them. We hypothesize that we will develop effective methods aimed at improving our understanding of rare diseases by combining hypothesis testing and hypothesis discovery, and by integrating information from the literature and from the patient record to obtain increased statistical power. This will involve using natural language processing and statistical methods to mine both the literature and the electronic health record (EHR).
描述(由申请人提供):罕见疾病在孤立的实验室中进行研究,被主流药理学公司遗忘,几乎被视为学术好奇心。寻找与罕见疾病相关/导致罕见疾病的变量(当每2,000人中影响不到1人时,这种情况是罕见的)是一项艰巨的任务。病例数量少,报告稀少,因此难以获得有意义/有意义的统计结果。有两种方法可以避免这些问题。第一是整合报告的案例和关联,以产生足够的统计效力。第二种方法是拥有一个独立的数据集,足够大,以涵盖罕见的病例。这两种方法都有其内在的问题。例如,文献检索将不同的研究放在一起,每个研究在人口,方法和目标方面都有自己的偏见。另一方面,在大数据库中盲目搜索关联会由于多个假设检验而引入大量假阳性。
这些问题可以通过开发创新的方法来避免,这些方法可以整合文献和纵向数据库中的信息和方法。为了实现这一目标,我们提出了一个团队,结合自然语言处理系统(卡罗尔弗里德曼),电子健康记录(乔治Hripcsak),统计数据库和计算病毒学(劳尔拉巴丹)的专业知识。该团队将采用跨学科的方法来挖掘和整合哥伦比亚/纽约长老会医院收集的文献和数据集。识别罕见疾病中的异常相关性是了解疾病起源并找到治愈方法的第一步。我们假设,我们将开发有效的方法,旨在提高我们对罕见疾病的理解,通过结合假设检验和假设发现,并通过整合文献和病历中的信息,以获得更高的统计功效。这将涉及使用自然语言处理和统计方法来挖掘文献和电子健康记录(EHR)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul Rabadan其他文献
Raul Rabadan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul Rabadan', 18)}}的其他基金
Towards a quantitative understanding of tumor evolution
定量了解肿瘤进化
- 批准号:
10642835 - 财政年份:2021
- 资助金额:
$ 53.3万 - 项目类别:
Towards a quantitative understanding of tumor evolution
定量了解肿瘤进化
- 批准号:
10297157 - 财政年份:2021
- 资助金额:
$ 53.3万 - 项目类别:
A transdisciplinary approach for dissecting stem cell states in prostate cancer
剖析前列腺癌干细胞状态的跨学科方法
- 批准号:
10686186 - 财政年份:2021
- 资助金额:
$ 53.3万 - 项目类别:
Towards a quantitative understanding of tumor evolution
定量了解肿瘤进化
- 批准号:
10454356 - 财政年份:2021
- 资助金额:
$ 53.3万 - 项目类别:
A transdisciplinary approach for dissecting stem cell states in prostate cancer
剖析前列腺癌干细胞状态的跨学科方法
- 批准号:
10491218 - 财政年份:2021
- 资助金额:
$ 53.3万 - 项目类别:
A transdisciplinary approach for dissecting stem cell states in prostate cancer
剖析前列腺癌干细胞状态的跨学科方法
- 批准号:
10273639 - 财政年份:2021
- 资助金额:
$ 53.3万 - 项目类别:
Uncovering Evolutionary History using the Topology of Genomic Data with Applications to HIV
利用基因组数据拓扑揭示进化历史并应用于艾滋病毒
- 批准号:
9037791 - 财政年份:2015
- 资助金额:
$ 53.3万 - 项目类别:
Uncovering Evolutionary History using the Topology of Genomic Data with Applications to HIV
利用基因组数据拓扑揭示进化历史并应用于艾滋病毒
- 批准号:
9265491 - 财政年份:2015
- 资助金额:
$ 53.3万 - 项目类别:
Project 1: Modeling tumor evolution in mouse and organoid models
项目 1:在小鼠和类器官模型中模拟肿瘤进化
- 批准号:
8866152 - 财政年份:2015
- 资助金额:
$ 53.3万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 53.3万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 53.3万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 53.3万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 53.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists