Non-invasive Chemical Genetic Control of Neuronal Activity
神经元活动的非侵入性化学遗传控制
基本信息
- 批准号:7885367
- 负责人:
- 金额:$ 38.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAfferent NeuronsAgonistAnimalsAreaAutistic DisorderBehaviorBehavioralBlood - brain barrier anatomyBrainCannulasCapsaicinCellsChargeDataDevelopmentDopamineDoseEngineeringEpilepsyFOS geneFluorescent DyesGated Ion ChannelGeneticGlutamatesGoalsImplantInfusion proceduresInjection of therapeutic agentKnock-in MouseLaboratoriesLidocaineLigandsMapsMembraneMemoryMental DepressionMental disordersMetabolicMetabolismMethodsMicrodialysisModelingMonitorMusNeurologicNeuronsNeurosciencesNociceptionOperative Surgical ProceduresOpticsPeripheralPharmaceutical PreparationsPhysiologicalPopulationPublic HealthPurkinje CellsReadingRegulationResearchResiniferatoxinResponse LatenciesRouteSchizophreniaSliceSodium ChannelSodium Channel BlockersSpecificityStaining methodStainsStereotyped BehaviorSystemTRPV1 geneTechniquesTechnologyTestingTherapeuticTimeWorkaddictionawakebasebehavior influencebrain cellcell typechemical geneticsdirect applicationdopaminergic neuronimplantationin vivointerestlight gatedmouse modelneural circuitneural stimulationnew technologynovelprogramspublic health relevancepublic health researchreceptorrelating to nervous systemresearch studyresponsesensory stimulussmall moleculetechnology development
项目摘要
DESCRIPTION (provided by applicant): Mapping functional circuits is a major goal for both cellular and systems neuroscience. Current approaches for mapping neural circuits are limited by the lack of technologies for evoking cell-specific neural activity. Available methods of neural stimulation rely on either local application of undiscriminating fields of electrical currents, glutamate uncaging, or the presentation of artificial sensory stimuli. Although recent use of light- gated ion channels has provided optical control of neuronal activity on rapid time scales, such approaches are limited by the requirement for direct optical access to neuronal populations of interest, and are not currently suitable for activating large brain areas or disperse neuronal populations. A transformative technology for neuroscience would be non-invasive control over neural activity in genetically defined populations of neurons in the mammalian brain. Such a goal requires combining genetic sensitization of neuronal subsets with a means to manipulate their electrical activity remotely without surgery or intracranial implants. To create such a technology, my laboratory has initiated a program of in vivo chemical genetic and physiological studies to engineer a mouse model suitable for precise non-invasive manipulation of neural activity in genetically defined populations of neurons in vivo. We have developed a conditional mouse model that sensitizes genetically defined neurons to an artificial ligand (capsaicin) by cell type-specific expression of a heterologous receptor (TRPV1). We have found that application of capsaicin to neurons expressing TRPV1 induces strong inward currents, triggers robust firing of action potentials, and activates stereotyped behaviors. Taking advantage of these preliminary data, and the extensive pharmacological and biophysical characterization of TRPV1, we propose to extend and modify this model to enable peripheral administration of agonists for central activation of defined neuronal subsets. Moreover, because the large TRPV1 channel pore is permeable to small molecules, including the membrane-impermeant sodium channel blocker QX-314, we propose to test this novel mouse model to enable both activation and inhibition of neuronal activity. This work will allow for the development of a novel in vivo technology for chemical genetic regulation of neuronal activity that is (1) orthogonal to optical and optogenetic strategies, (2) based on the only current Cre/lox-based model for neuronal activation, (3) may allow for fully non-invasive CNS activation by drug injection, and (4) may enable targeted small molecule delivery to defined neuronal subsets. PUBLIC HEALTH RELEVANCE: The proposed research will develop a novel technology for non-invasive control over electrical activity in genetically defined populations of brain cells. Abnormal electrical activity in the brain contributes to epilepsy, memory decline, depression, autism, schizophrenia, and addiction. By developing a crucial new technology for targeted manipulation of brain cell activity and metabolism, the proposed research will define novel brain circuits and therapeutic strategies for treating these devastating neurological and psychiatric disorders, which currently have a profound negative impact on public health.
描述(由申请人提供):绘制功能电路图是细胞和系统神经科学的主要目标。目前绘制神经回路的方法由于缺乏诱发细胞特异性神经活动的技术而受到限制。现有的神经刺激方法依赖于局部应用不加区别的电流场、谷氨酸解禁或人工感觉刺激的呈现。尽管最近使用光门控离子通道已经提供了快速时间尺度上的神经元活动的光学控制,但是这种方法受到直接光学访问感兴趣的神经元群体的要求的限制,并且目前不适合激活大的大脑区域或分散的神经元群体。神经科学的一项变革性技术将是对哺乳动物大脑中基因定义的神经元群体的神经活动进行非侵入性控制。这样的目标需要将神经元亚群的遗传敏化与远程操纵其电活动的方法相结合,而无需手术或颅内植入。为了创造这样的技术,我的实验室启动了一项体内化学遗传和生理学研究计划,以设计一种适合对体内基因定义的神经元群体中的神经活动进行精确非侵入性操作的小鼠模型。我们开发了一种条件小鼠模型,通过异源受体 (TRPV1) 的细胞类型特异性表达,使基因定义的神经元对人工配体(辣椒素)敏感。我们发现,将辣椒素应用于表达 TRPV1 的神经元会诱导强烈的内向电流,触发动作电位的强烈放电,并激活刻板行为。利用这些初步数据以及 TRPV1 的广泛药理学和生物物理特征,我们建议扩展和修改该模型,以实现激动剂的外周给药,以实现特定神经元亚群的中枢激活。此外,由于 TRPV1 通道大孔可渗透小分子,包括非膜渗透性钠通道阻滞剂 QX-314,因此我们建议测试这种新型小鼠模型,以激活和抑制神经元活动。这项工作将允许开发一种用于神经元活动化学遗传调控的新型体内技术,该技术是(1)与光学和光遗传学策略正交,(2)基于当前唯一的基于 Cre/lox 的神经元激活模型,(3)可能允许通过药物注射实现完全非侵入性 CNS 激活,(4)可能能够将靶向小分子递送到定义的神经元亚群。公共健康相关性:拟议的研究将开发一种新技术,用于对基因定义的脑细胞群中的电活动进行非侵入性控制。大脑异常的电活动会导致癫痫、记忆力下降、抑郁症、自闭症、精神分裂症和成瘾。通过开发一种关键的新技术来有针对性地操纵脑细胞活动和新陈代谢,拟议的研究将定义新的大脑回路和治疗策略,以治疗这些破坏性的神经和精神疾病,这些疾病目前对公众健康产生了深远的负面影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D EHLERS其他文献
MICHAEL D EHLERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D EHLERS', 18)}}的其他基金
Non-invasive Chemical Genetic Control of Neuronal Activity
神经元活动的非侵入性化学遗传控制
- 批准号:
7684412 - 财政年份:2009
- 资助金额:
$ 38.61万 - 项目类别:
Non-invasive Chemical Genetic Control of Neuronal Activity
神经元活动的非侵入性化学遗传控制
- 批准号:
8106417 - 财政年份:2009
- 资助金额:
$ 38.61万 - 项目类别:
Molecular Targets of A-beta-Induced Synaptic Dysfunction
A-β 诱导的突触功能障碍的分子靶点
- 批准号:
6945873 - 财政年份:2004
- 资助金额:
$ 38.61万 - 项目类别:
Molecular Targets of A-beta-Induced Synaptic Dysfunction
A-β 诱导的突触功能障碍的分子靶点
- 批准号:
7090060 - 财政年份:2004
- 资助金额:
$ 38.61万 - 项目类别:
Molecular Targets of A-beta-Induced Synaptic Dysfunction
A-β 诱导的突触功能障碍的分子靶点
- 批准号:
6816895 - 财政年份:2004
- 资助金额:
$ 38.61万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 38.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
Operating Grants














{{item.name}}会员




