CRCNS: Modeling Acquisition and Extinction of Fear Memories in Amygdala Circuits

CRCNS:模拟杏仁核回路中恐惧记忆的获取和消除

基本信息

  • 批准号:
    7923205
  • 负责人:
  • 金额:
    $ 23.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-31 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall objective of the proposed cross-disciplinary research is to use an integrated computational/experimental approach to study the acquisition and extinction of conditioned fear associations in the neural components of the fear circuit of mammals. We propose an interdependent series of experiments and biologically realistic simulations, using a 'from biology to model, to predictions, and back to biology' theme where experiments will constrain the design of the models ('from biology to model') and discrepancies between the models and expected outcomes will lead to the formulation of hypotheses ('to predictions') that will be tested experimentally ('back to biology'). The computational models will be developed using experimental data from laboratories of two neuroscience Co-PIs. Preliminary models, developed by our group over a period of 21/2 years demonstrate that they can provide significant insights into the intrinsic and synaptic mechanisms associated with learning and neuroplasticity in conditioned fear. The proposed research will expand this collaboration with the following specific aims: 1.To investigate the underlying mechanisms of learning and neuroplasticity in the amygdala related to the acquisition and extinction of conditioned fear using a biologically realistic computational model, and to test model predictions in experiments. From biology to model: Use published biology data (in vitro and in vivo), to investigate neurocomputational properties of single cell models of amygdala nuclei including lateral amygdala (LA), basal amygdala (BA), intercalated cells (ITC), and central nucleus (CeM and CeL). From biology to model and to predictions: Investigate how the key amygdala nuclei interact to acquire and extinguish conditioned fear memories using a biologically realistic network model that includes the single cell models. Make predictions to quantify the relative contributions of the various projections from LA to CeM, and about other mechanisms. From predictions to biology (and back): Assess the effects of fear conditioning and extinction on synaptic responses in the projections from LA to CeL, and CeL to CeM, in an in vitro slice preparation (to be performed in the Par¿ lab). Incorporate findings from experiments and refine the model. 2. To investigate the mechanisms involved in the regulation of amygdala-dependent conditioning and extinction fear memory by the ventro medial prefrontal cortex, using a biologically realistic computational model, and to test model predictions in experiments. From biology to model: Use published biology data (in vitro and in vivo), to investigate the neurocomputational properties of single cells and networks in the pre-limbic (PL) and infra-limbic (IL) regions of the ventral medial prefrontal cortex (vmPFC). From biology to model and to predictions: Determine how the vmPFC regulates amygdala-dependent fear and extinction memories by developing an overall biologically realistic model including the vmPFC and the amygdala (from specific aim 1). Make predictions about the possible connections between vmPFC and the amygdala that may regulate these memories, and the effect of vmPFC inactivation on the tone responses of BA and Ce neurons. From predictions to biology (and back): Assess the effects of vmPFC inactivation on tone responses of BA and Ce neurons during fear conditioning and extinction (to be performed in Quirk lab). Incorporate findings from experiments and refine the model of vmPFC regulation of the amygdala in a single context. Intellectual Merit. The proposed interdisciplinary research will be the first to develop a biologically realistic computational model of the fear circuit. It will facilitate discovery of the learning and neuroplasticity mechanisms that underlie acquisition and extinction of conditioned fear in mammals, and will lead to valuable predictions, and novel directions for experimental research. The approach proposed will also lead to a better understanding of the systems and design principles governing the fear circuit. Broader Impact. The proposed computational model will provide new insights and understanding of a spectrum of psychiatric disorders including PTSD and anxiety disorders, which are thought to arise from deficits in the fear circuit. It will also be a key tool for the development of novel agents and strategies for the treatment of such disorders. Finally, the collaboration will also contribute to the generation of new curricula and materials for undergraduate, graduate and medical student education, and for K-12students.
描述(由申请人提供):拟议的跨学科研究的总体目标是使用一种综合的计算/实验方法来研究哺乳动物恐惧回路神经组件中条件性恐惧联系的获得和消亡。我们提出了一系列相互依赖的实验和生物现实模拟,使用一个“从生物学到模型,到预测,再回到生物学”的主题,其中实验将限制模型的设计(从生物学到模型‘),模型和预期结果之间的差异将导致将通过实验(’回到生物学‘)检验的假说(’到预测‘)的形成。计算模型将使用来自两个神经科学合作项目实验室的实验数据来开发。我们团队在21年半的时间里开发的初步模型表明,它们可以为与学习和条件性恐惧的神经可塑性相关的内在和突触机制提供重要的见解。这项拟议的研究将扩大这种合作,具体目标如下:1.使用生物现实的计算模型,研究杏仁核学习和神经可塑性与条件性恐惧的获得和消退相关的潜在机制,并在实验中检验模型预测。从生物学到模型:利用已发表的生物学数据(体外和体内),研究杏仁核单细胞模型的神经计算特性,包括杏仁外侧核(LA)、杏仁基底核(BA)、插入细胞(ITC)和中央核(CEM和CEL)。从生物学到模型和预测:使用包括单细胞模型的生物现实网络模型,研究关键杏仁核如何相互作用来获得和消除条件性恐惧记忆。做出预测,量化从LA到CEM的各种预测的相对贡献,以及关于其他机制的预测。从预测到生物学(以及返回):在体外切片制备(将在PAR实验室进行)中,评估恐惧条件反射和消退对LA到CEL和CEL到CEM投射的突触反应的影响。吸收实验结果并改进模型。2.利用生物真实的计算模型,研究杏仁核依赖的条件反射和前额叶腹侧皮质对消退恐惧记忆的调节机制,并在实验中验证模型预测。从生物学到模型:利用已发表的生物学数据(体外和体内),研究腹侧内侧前额叶皮质(VmPFC)边缘前(PL)和边缘下(IL)区域单个细胞和网络的神经计算特性。从生物学到模型再到预测:通过开发包括vmPFC和杏仁核在内的整体生物现实模型,确定vmPFC如何调控杏仁核依赖的恐惧和消退记忆(来自特定目标1)。预测vmPFC与调节这些记忆的杏仁核之间的可能联系,以及vmPFC失活对BA和CE神经元的音调反应的影响。从预测到生物学(以及回归):评估vmPFC失活对恐惧条件反射和消退过程中BA和CE神经元音调反应的影响(将在Quirk实验室进行)。结合实验结果,在单一背景下改进杏仁核vmPFC调控模型。智力上的功绩。这项拟议的跨学科研究将第一次开发出生物上真实的恐惧回路计算模型。这将有助于发现哺乳动物获得和消除条件性恐惧的学习和神经可塑性机制,并将为实验研究带来有价值的预测和新的方向。建议的方法还将使人们更好地理解管理恐惧电路的系统和设计原则。更广泛的影响。拟议的计算模型将为包括创伤后应激障碍和焦虑症在内的一系列精神障碍提供新的见解和理解,这些疾病被认为是由恐惧回路中的缺陷引起的。它也将是开发治疗这类疾病的新药物和战略的关键工具。最后,合作还将有助于为本科生、研究生和医学生教育以及K-12学生制定新的课程和材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satish S Nair其他文献

Multiple mechanisms of theta rhythm generation in a model of the hippocampus
  • DOI:
    10.1186/1471-2202-16-s1-o17
  • 发表时间:
    2015-12-18
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Ali Hummos;Satish S Nair
  • 通讯作者:
    Satish S Nair

Satish S Nair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satish S Nair', 18)}}的其他基金

CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10636642
  • 财政年份:
    2019
  • 资助金额:
    $ 23.57万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10002297
  • 财政年份:
    2019
  • 资助金额:
    $ 23.57万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10207403
  • 财政年份:
    2019
  • 资助金额:
    $ 23.57万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    10418751
  • 财政年份:
    2019
  • 资助金额:
    $ 23.57万
  • 项目类别:
CRCNS: Optimization of closed-loop control of gamma oscillations
CRCNS:伽马振荡闭环控制的优化
  • 批准号:
    9914633
  • 财政年份:
    2019
  • 资助金额:
    $ 23.57万
  • 项目类别:
Interdisciplinary Training in Computational Neuroscience for Researchers from Graduate and Medical Students to Junior Faculty
为从研究生、医学生到初级教师的研究人员提供计算神经科学跨学科培训
  • 批准号:
    9303447
  • 财政年份:
    2015
  • 资助金额:
    $ 23.57万
  • 项目类别:
Interdisciplinary Training in Computational Neuroscience for Researchers from Graduate and Medical Students to Junior Faculty
为从研究生、医学生到初级教师的研究人员提供计算神经科学跨学科培训
  • 批准号:
    9037332
  • 财政年份:
    2015
  • 资助金额:
    $ 23.57万
  • 项目类别:
CRCNS: Modeling Acquisition and Extinction of Fear Memories in Amygdala Circuits
CRCNS:模拟杏仁核回路中恐惧记忆的获取和消除
  • 批准号:
    8081062
  • 财政年份:
    2009
  • 资助金额:
    $ 23.57万
  • 项目类别:
CRCNS: Modeling Acquisition and Extinction of Fear Memories in Amygdala Circuits
CRCNS:模拟杏仁核回路中恐惧记忆的获取和消除
  • 批准号:
    7776621
  • 财政年份:
    2009
  • 资助金额:
    $ 23.57万
  • 项目类别:

相似海外基金

Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Launchpad
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
  • 批准号:
    10677075
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Understanding the Effects of Adolescent Nicotine Exposure on Increased Risk for Mood and Anxiety Disorders: Bridging the Gap from Pre-Clinical to Clinical Investigations
了解青少年尼古丁暴露对情绪和焦虑障碍风险增加的影响:弥合临床前研究与临床研究之间的差距
  • 批准号:
    478121
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Operating Grants
Addressing perinatal mood and anxiety disorders (PMADs) through a doula intervention
通过导乐干预解决围产期情绪和焦虑障碍 (PMAD)
  • 批准号:
    10861961
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Evaluation of the effectiveness and implementation of online group cognitive behavioral therapy for perinatal women with anxiety disorders.
评估在线团体认知行为治疗对患有焦虑症的围产期妇女的有效性和实施情况。
  • 批准号:
    22KJ3164
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the error-related negativity and the balance N1 in children with anxiety disorders
调查焦虑症儿童的错误相关消极性和平衡 N1
  • 批准号:
    10685283
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
RESONY: Digital therapeutic to manage anxiety disorders
RESONY:管理焦虑症的数字疗法
  • 批准号:
    10042996
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Grant for R&D
Augmenting the Efficacy of Benzodiazepine Taper with Telehealth-Delivered Cognitive Behavioral Therapy for Anxiety Disorders in Patients Using Prescription Opioids
通过远程医疗提供的认知行为疗法来增强苯二氮卓类药物逐渐减少的疗效,以治疗使用处方阿片类药物的焦虑症患者
  • 批准号:
    10705005
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
Developing an adjunctive mobile application for co-morbid substance use and anxiety disorders: comprehensive user experience testing of the Unwinding Anxiety application
开发针对共病药物使用和焦虑症的辅助移动应用程序:Unwinding Anxiety 应用程序的综合用户体验测试
  • 批准号:
    10597521
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
Investigating the role of neuroinflammation in environmental exposure-induced anxiety disorders
研究神经炎症在环境暴露诱发的焦虑症中的作用
  • 批准号:
    10573948
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了