Molecular Mechanisms Underlying PSD-MAGUK/NMDA Receptor Interactions
PSD-MAGUK/NMDA 受体相互作用的分子机制
基本信息
- 批准号:7910286
- 负责人:
- 金额:$ 5.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnatomyAutistic DisorderDLG1 geneDegenerative DisorderDendritesDevelopmentElectrophysiology (science)FutureGeneticGlutamate ReceptorGlutamatesGoalsImageKineticsKnockout MiceLearningMeasuresMediatingMemoryMolecularMolecular GeneticsMorphologyN-Methyl-D-Aspartate ReceptorsNeuronsPhysiologyPlayProtein Binding DomainProtein FamilyProteinsResearchRoleScaffolding ProteinSchizophreniaScientistShapesSignal TransductionSynapsesSynaptic TransmissionSynaptic plasticitySystemTechniquesTertiary Protein Structurebasedesigndevelopmental diseasediscs, large (Drosophila) homolog 2 protein, ratin vivomembrane-associated guanylate kinasenervous system disorderoverexpressionpresynaptic density protein 95public health relevancereceptorrelating to nervous systemresearch studysynapse-associated protein 97trafficking
项目摘要
DESCRIPTION (provided by applicant): The overall objectives of my proposal are to understand the molecular mechanisms by which glutamate receptors, particularly NMDA receptors (NMDARs), interact with synaptic scaffolding proteins and how these interactions shape synaptic transmission. Specifically, I will study how the postsynaptic density-95-like membrane associated guanylate kinase (PSD-MAGUK) protein family, in particular the protein SAP97, traffic NMDA receptors subunits and change their physiology. PSD-MAGUKs and NMDA receptors play a critical role in basal synaptic transmission and learning and memory, and have been implicated in a wide variety of neurological diseases, ranging from developmental disorders such as autism, schizophrenia, to degenerative diseases such as Alzheimer's. My research goals are outlined in two Specific Aims: Specific Aim 1: SAP97 controls AMPA and NMDA receptor trafficking and synaptic morphology. I hypothesize that SAP97 traffics AMPA and NMDARs to synapses during early development and specifically promotes GluN2A-containing NMDARs. Second, I hypothesize that SAP97-mediated signaling also controls dendrite and synapse morphology in developing neurons. I will manipulate SAP97 protein levels in vivo and use electrophysiology and confocal imaging to measure the role of this protein in synaptic transmission and neuronal anatomy. Specific Aim 2: Molecular differences in PSD-MAGUKs underlie NMDAR kinetics and subunit switching. First, I hypothesize that specific protein binding domains shared by PSD-93, -95, and SAP97 promote synaptic trafficking of GluN2A-containing NMDARs while different motifs in SAP102 promote GluN2B- containing receptors. Second, I hypothesize that PSD-MAGUKs also directly influence NMDAR physiology, with each PSD-MAGUK differentially interacting with NMDARs and shaping synaptic currents. I will design and overexpress chimeric PSD-MAGUK proteins in vivo, in NMDAR subunit conditional knockout mice, and measure the effect on NMDARs using electrophysiology. I will also use a heterologous expression system to measure direct interactions between these proteins. Thus, I will define the protein domains responsible for PSD-MAGUK/NMDAR interactions and how these interactions alter NMDAR physiology. These experiments take a multi-dimensional approach to a vital scientific question, combining cutting edge molecular genetic, physiologocial, and anatomical techniques and will enhance our understanding of fundamental molecular mechanisms of synaptic transmission and learning and memory.
PUBLIC HEALTH RELEVANCE: My experiments study the interactions between glutamate receptors and the family of proteins that organize them at synapses. These studies will uncover fundamental mechanisms of glutamatergic synaptic transmission, the major form of neural signaling, and synaptic plasticity, the cellular basis of learning and memory. Deficits in synaptic transmission are symptomatic of most neurological diseases. Thus, my results will be relevant both to basic scientists and to clinicians and will guide the way for future studies of learning and memory and the genetic causes of and pharmacological therapies for the alleviation of a variety of neurological diseases.
描述(申请人提供):我的建议的总体目标是了解谷氨酸受体,特别是NMDAR(NMDAR)与突触支架蛋白相互作用的分子机制,以及这些相互作用如何塑造突触传递。具体地说,我将研究突触后密度-95样膜相关鸟氨酸激酶(PSD-MAGUK)蛋白家族,特别是SAP97蛋白是如何运输NMDA受体亚基并改变其生理功能的。PSD-MAGUKs和NMDA受体在基础突触传递和学习记忆中起关键作用,并与多种神经疾病有关,从自闭症、精神分裂症等发育障碍到阿尔茨海默氏症等退行性疾病。我的研究目标概括为两个特定目标:特定目标1:SAP97控制AMPA和NMDA受体的运输和突触形态。我假设SAP97在早期发育过程中将AMPA和NMDAR运输到突触,并特别促进含有GluN2A的NMDAR。其次,我假设SAP97介导的信号也控制发育中神经元的树突和突触形态。我将在体内操纵SAP97蛋白水平,并使用电生理学和共聚焦成像来测量该蛋白在突触传递和神经元解剖中的作用。具体目标2:PSD-MAGUK的分子差异是NMDAR动力学和亚基转换的基础。首先,我假设PSD-93、-95和SAP97共有的特定蛋白结合域促进含有GluN2A的NMDARs的突触运输,而SAP102中的不同基序促进含有GluN2B的受体。其次,我假设PSD-MAGUK也直接影响NMDAR的生理学,每个PSD-MAGUK与NMDAR有不同的相互作用,并塑造突触电流。我将在体内设计并在NMDAR亚单位条件性基因敲除小鼠中过表达PSD-Maguk嵌合蛋白,并利用电生理学测量对NMDAR的影响。我还将使用异源表达系统来测量这些蛋白质之间的直接相互作用。因此,我将定义负责PSD-Maguk/NMDAR相互作用的蛋白质结构域,以及这些相互作用如何改变NMDAR生理。这些实验对一个重要的科学问题采取了多维的方法,结合了尖端的分子遗传学、生理学和解剖学技术,并将加强我们对突触传递和学习记忆的基本分子机制的理解。
与公共健康相关:我的实验研究了谷氨酸受体和在突触组织它们的蛋白质家族之间的相互作用。这些研究将揭示谷氨酸能突触传递的基本机制,这是神经信号的主要形式,以及突触可塑性,突触可塑性是学习和记忆的细胞基础。突触传递障碍是大多数神经系统疾病的症状。因此,我的结果将对基础科学家和临床医生都有意义,并将为未来学习和记忆以及缓解各种神经疾病的遗传原因和药物疗法的研究指明方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MacKenzie A Howard其他文献
MacKenzie A Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MacKenzie A Howard', 18)}}的其他基金
Mechanisms of altered synaptic integration and plasticity underlying cellular and circuit dysfunction in genetic epilepsy disorders
遗传性癫痫病中细胞和回路功能障碍的突触整合和可塑性改变的机制
- 批准号:
10586117 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Mechanisms of altered synaptic integration and plasticity underlying cellular and circuit dysfunction in genetic epilepsy disorders
遗传性癫痫病中细胞和回路功能障碍的突触整合和可塑性改变的机制
- 批准号:
10376364 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Mechanisms of altered synaptic integration and plasticity underlying cellular and circuit dysfunction in genetic epilepsy disorders
遗传性癫痫病中细胞和回路功能障碍的突触整合和可塑性改变的机制
- 批准号:
10179505 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Mechanisms of altered synaptic integration and plasticity underlying cellular and circuit dysfunction in genetic epilepsy disorders
遗传性癫痫病中细胞和回路功能障碍的突触整合和可塑性改变的机制
- 批准号:
9973980 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Molecular Mechanisms Underlying PSD-MAGUK/NMDA Receptor Interactions
PSD-MAGUK/NMDA 受体相互作用的分子机制
- 批准号:
8061587 - 财政年份:2010
- 资助金额:
$ 5.05万 - 项目类别:
Molecular Mechanisms Underlying PSD-MAGUK/NMDA Receptor Interactions
PSD-MAGUK/NMDA 受体相互作用的分子机制
- 批准号:
8245101 - 财政年份:2010
- 资助金额:
$ 5.05万 - 项目类别:
Development of Inhibition in the Avian Cochlear Nucleus
禽耳蜗核抑制的发展
- 批准号:
7198079 - 财政年份:2006
- 资助金额:
$ 5.05万 - 项目类别:
Development of Inhibition in the Avian Cochlear Nucleus
禽耳蜗核抑制的发展
- 批准号:
7113269 - 财政年份:2006
- 资助金额:
$ 5.05万 - 项目类别:
Development of Inhibition in the Avian Cochlear Nucleus
禽耳蜗核抑制的发展
- 批准号:
7338006 - 财政年份:2006
- 资助金额:
$ 5.05万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 5.05万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 5.05万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 5.05万 - 项目类别:














{{item.name}}会员




