Role of PDK1 in pancreatic cancer cell fitness under tumor nutrient stress
PDK1在肿瘤营养应激下胰腺癌细胞健康中的作用
基本信息
- 批准号:10751747
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:AffectAnabolismAnimalsBiochemicalBiological AssayBiological MarkersBiological ModelsBlood VesselsCRISPR interferenceCRISPR screenCarbonCell SurvivalCellsCitric Acid CycleClinicCommunicationDataDependenceDiseaseDrug CompoundingEnvironmentEquilibriumFermentationFormulationGeneticGoalsGrowthHomeostasisHypoxiaInjectionsIntercellular FluidLactic acidLipidsMalignant neoplasm of pancreasMediatingMediatorMetabolicMetabolismModelingMusNADHNucleic AcidsNutrientNutrient availabilityOxidation-ReductionOxidative StressOxygenPDH kinasePancreatic Ductal AdenocarcinomaPathway interactionsPerfusionPhosphorylationPhosphotransferasesProductionProliferatingProteinsProto-Oncogene Proteins c-aktPyruvatePyruvate Dehydrogenase ComplexReactive Oxygen SpeciesRegulationRoleSignal PathwaySignal TransductionStressTestingTherapeutically TargetableTissuesWorkaerobic glycolysiscancer cellcancer typecell growthclinical translationclinically relevantcofactorcytotoxiceffective therapyfitnessin vivoknock-downmacromoleculemetabolic abnormality assessmentmetabolomicsneoplastic cellnormoxianovelnovel therapeutic interventionoxidationpancreatic cancer cellspancreatic ductal adenocarcinoma cellpancreatic ductal adenocarcinoma modelpreventpyruvate dehydrogenaseresponsescreeningsensortherapeutic targettumortumor growthtumor microenvironment
项目摘要
PROJECT SUMMARY
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type in urgent need of more
effective treatment options. A notable feature of PDAC tumors is the highly altered nutrient conditions present
within the tumor microenvironment (TME) caused by poor perfusion from the supporting tumor vasculature.
Although PDAC cells can rapidly proliferate within these suboptimal nutrient conditions, the metabolic
adaptations they rely upon to do so remain unknown. Furthermore, understanding these adaptations has the
potential to reveal therapeutically targetable vulnerabilities of PDAC cells in vivo. Towards this end, we have
developed a novel medium formulation (TIFM) that recapitulates the nutrient conditions present within PDAC
tumors in vivo, in order to study the metabolic responses of PDAC cells to tumor nutrient stress using tractable
ex vivo models. Applying pooled CRISPR-interference (CRISPRi) screening to this new model system, we
surprisingly identified a hypoxia-induced kinase, pyruvate-dehydrogenase kinase 1 (PDK1), as being critical to
the fitness of PDAC cells in TIFM, even under normoxia conditions. PDK1 is a kinase normally activated by
hypoxia to inhibit the pyruvate dehydrogenase (PDH) complex and thus redirect pyruvate-derived carbon away
from the TCA cycle and towards lactic acid fermentation. The overall goal of this proposal is to understand how
and why PDK1 and aerobic glycolysis become critical to PDAC cellular fitness during tumor nutrient stress, and
to evaluate in vivo the functional dependence of PDAC cells on suppressed pyruvate oxidation for tumor
growth. I hypothesize that two potential mechanisms may underlie PDK1 dependency in TIFM: (1) PDK1
promotes aerobic glycolysis to prevent the production of cytotoxic levels of reactive oxygen species (ROS) or
(2) supports NAD+/NADH cofactor balance for macromolecule biosynthesis. Further, I hypothesize that PDK1
activity is upregulated under TIFM conditions through a nutrient-sensitive mTORC2-AKT-PDK1 signaling axis.
We will investigate this hypothesis in three specific aims. Aim 1. Functional and metabolic assays will be
performed to determine the adaptive function of PDK1 under tumor nutrient stress. Aim 2. Functional and
biochemical assays will be performed to identify the nutrient factor in TIFM responsible for PDK1 dependency
and elucidate the signaling pathway that communicates its availability to the TCA cycle. Aim 3. Animal studies
will be performed to determine the essentiality of suppressed pyruvate oxidation for PDAC tumor growth in
vivo. These findings reveal a critical metabolic dependency of cancer cells in adaptation to the nutrient stress
present in the TME. Furthermore, understanding this adaptation may reveal novel therapeutic strategies for
managing pancreatic cancer in the clinic based on metabolic constraints set by the tumor microenvironment.
项目摘要
胰腺导管腺癌(PDAC)是一种高度侵袭性的癌症类型,迫切需要更多的治疗。
有效的治疗选择。PDAC肿瘤的一个显著特征是存在高度改变的营养条件
在肿瘤微环境(TME)内,由支持肿瘤血管系统的不良灌注引起。
尽管PDAC细胞可以在这些次优营养条件下快速增殖,但代谢产物的代谢产物的含量仍然很低。
它们所依赖的适应性仍然未知。此外,了解这些适应性具有
揭示PDAC细胞在体内的治疗靶向脆弱性的潜力。为此,我们
开发了一种新的培养基配方(TIFM),概括了PDAC中存在的营养条件
为了研究PDAC细胞对肿瘤营养应激的代谢反应,使用易处理的
离体模型。将合并的CRISPR干扰(CRISPRi)筛选应用于该新模型系统,我们
令人惊讶地鉴定了一种缺氧诱导的激酶,即磷酸脱氢酶激酶1(PDK 1),作为对
PDAC细胞在TIFM中的适应性,即使在常氧条件下。PDK 1是一种激酶,通常由
缺氧以抑制丙酮酸脱氢酶(PDH)复合物,从而将丙酮酸衍生的碳重定向离开
从TCA循环到乳酸发酵。本提案的总体目标是了解如何
以及为什么PDK 1和有氧糖酵解在肿瘤营养应激期间对PDAC细胞适应性至关重要,以及
在体内评估PDAC细胞对肿瘤抑制丙酮酸氧化的功能依赖性
增长我推测TIFM中PDK 1依赖性可能有两种潜在机制:(1)PDK 1
促进有氧糖酵解,以防止产生细胞毒性水平的活性氧(ROS),或
(2)支持大分子生物合成的NAD+/NADH辅因子平衡。此外,我假设PDK 1
活性在TIFM条件下通过营养敏感性mTORC 2-AKT-PDK 1信号传导轴上调。
我们将在三个具体目标中研究这一假设。目标1.将进行功能和代谢测定,
测定PDK 1在肿瘤营养应激下的适应功能。目标2.功能和
将进行生化测定以鉴定TIFM中负责PDK 1依赖性的营养因子
并阐明了将其有效性传递给TCA循环的信号通路。目标3.动物研究
将进行,以确定抑制丙酮酸氧化对PDAC肿瘤生长的重要性,
vivo.这些发现揭示了癌细胞在适应营养压力时的关键代谢依赖性
在TME中。此外,了解这种适应可能会揭示新的治疗策略,
基于肿瘤微环境设定的代谢约束在临床中管理胰腺癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Sheehan其他文献
Colin Sheehan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 4.77万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 4.77万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 4.77万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




