High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily

用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量

基本信息

  • 批准号:
    10752370
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Many disease-associated variants in coding regions of the genome affect translated protein and enzyme products by perturbing their folded conformation or their function, such as interactions with substrates or macromolecular partners. However, we lack a unified predictive framework to predict functional effects of coding variants, limiting how genomic data can be used in precision medicine. Machine learning models trained on large sequence databases have claimed to predict deleterious effects from coding variants in several model proteins, but to date their practical usage has been limited because of two major challenges. The first is the lack of descriptive, “ground truth” biophysical datasets relating sequence variation to native protein properties, due to the low throughput of traditional biochemical and biophysical experiments. The second is that there is not a well- established method for integrating these data in state-of-the-art predictive models. To address these critical limitations, I propose to apply cutting-edge microfluidic techniques to generate large quantitative biophysical datasets connecting sequence variation to function in human acylphosphatase (ACYP), a model protein of the alpha/beta fold family (found in ~10% of human proteins), and leverage these data to enhance predictive models. This microfluidic platform (HT-MEK) contains an array of chambers that allow for parallel expression and purification of >1,700 proteins, and provides measurements of in vitro kinetic and thermodynamic constants for each. In Aim 1, I will engineer a series of ACYP functional assays using HT-MEK and derivative microfluidic technologies, first testing in vitro expression, on-chip stability, and catalytic turnover of a small library of ACYP variants and finally comparing to traditional biochemical measurements. In Aim 2, I will rapidly generate scanning mutagenesis libraries in ACYP and make measurements across hundreds of ACYP variants on HT-MEK. In Aim 3, in collaboration with ML experts, I will use this unprecedented quantitative biochemical dataset to fine-tune a cutting-edge deep learning to provide the first variant effects predictor enhanced by in vitro data at scale. My preliminary data has shown that this model can generate de novo ACYP sequences that fold and are catalytically proficient, suggesting that it will provide a strong foundation for functional prediction. Together, my results will provide insight into the utility of in vitro, biochemical datasets from human proteins in training better predictors of disease phenotypes. The training that I will obtain in carrying out these Aims will allow me to (1) develop skills in research design, analysis, and interpretation of protein biophysics data; (2) learn advanced techniques in protein biochemistry and statistical sequence analysis; and (3) obtain a competitive post-doctoral fellowship with the long-term goal of establishing an independently-funded laboratory at a research-intensive university.
项目摘要 基因组编码区的许多疾病相关变异影响翻译的蛋白质和酶 通过扰乱其折叠构象或其功能,如与底物的相互作用, 大分子伴侣然而,我们缺乏一个统一的预测框架来预测编码的功能效应 变异,限制了基因组数据如何用于精准医学。机器学习模型在大型 序列数据库已经声称预测了几种模型蛋白中编码变体的有害作用, 但迄今为止,由于两个主要挑战,它们的实际使用受到限制。首先是缺乏 描述性的,“地面实况”生物物理数据集,将序列变异与天然蛋白质性质相关, 传统生物化学和生物物理实验的低通量。第二个是没有一个好的- 建立了将这些数据整合到最先进的预测模型中的方法。以应对这些严峻的 限制,我建议应用尖端的微流体技术,以产生大量的定量生物物理 将人类酰基磷酸酶(ACYP)的序列变异与功能联系起来的数据集,ACYP是一种模型蛋白质 α/β折叠家族(在约10%的人类蛋白质中发现),并利用这些数据来增强预测模型。 该微流体平台(HT-MEK)包含允许平行表达的腔室阵列, 纯化> 1,700蛋白质,并提供体外动力学和热力学常数的测量, 每个.在目标1中,我将设计一系列使用HT-MEK和衍生物微流体的ACYP功能测定 技术,首先测试ACYP的小文库的体外表达、芯片上稳定性和催化周转率。 最后与传统的生化测量进行比较。在目标2中,我将快速生成扫描 在ACYP中的突变文库中,并在HT-MEK上对数百个ACYP变体进行测量。在Aim中 3、与机器学习专家合作,我将使用这个前所未有的定量生化数据集来微调一个 尖端的深度学习提供通过大规模体外数据增强的第一个变体效应预测因子。我 初步数据表明,该模型可以产生从头ACYP序列, 这表明它将为功能预测提供坚实的基础。综合起来,我的结果 提供了对体外效用的洞察,来自人类蛋白质的生化数据集在训练更好的预测因子中的作用。 疾病表型在实现这些目标的过程中,我将获得的培训将使我能够(1)发展技能 在研究设计,分析和蛋白质生物物理学数据的解释;(2)学习先进的技术, 蛋白质生物化学和统计序列分析;(3)获得具有竞争力的博士后奖学金, 在一所研究密集型大学建立一个独立资助的实验室的长期目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Micah Olivas其他文献

Micah Olivas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了