Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
基本信息
- 批准号:10751722
- 负责人:
- 金额:$ 3.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenosine MonophosphateAdhesionsAdhesivesAutomobile DrivingBehaviorBiomechanicsC cadherinCarbonCattleCell NucleusCellsChildhoodChimeric ProteinsComplexCongenital AbnormalityCuesDiseaseDissociationDominant-Negative MutationEctodermEmbryoEmbryonic DevelopmentEndodermEnvironmentExtracellular MatrixFellowshipFibronectinsFocal AdhesionsGeneticGerm LayersGlycolysisHeartHumanHuman DevelopmentImageImmunologic SurveillanceIndividualInfant MortalityIntegrinsInvestigationKnowledgeLaboratoriesLifeLigandsLinkLysineMechanicsMediatorMentorsMesodermMetabolicMetabolismMicrotubulesMitochondriaMonoclonal AntibodiesMorphogenesisMovementMulticellular ProcessNeoplasm MetastasisNeural Tube DefectsNormal tissue morphologyOligonucleotidesPathologic ProcessesPathologyPhenotypePhysical FunctionPhysiciansPlasmaPlayProcessProtein KinaseProteinsResolutionRespirationRoleScientistSignal TransductionSpatial DistributionStressTestingTissuesTractionTranscriptWarburg EffectWorkXenopusaerobic glycolysiscancer cellcareercell behaviorcell motilitycohortcollaborative environmentcritical periodexperimental studyextracellulargastrulationgenetic regulatory proteininhibitormechanical forcemechanotransductionmigrationmitochondrial metabolismpharmacologicpolarized cellrecruitrho GTP-Binding Proteinsspatiotemporalsupportive environment
项目摘要
PROJECT SUMMARY/ABSTRACT [30 LINES MAX]
Biomedical advances over the past twenty years have reduced the infant mortality rate in the US throughout
the 21st century. However, congenital malformations that arise from dysregulated morphogenesis remain the
leading cause of US infant mortality. An especially critical period of morphogenesis is gastrulation, a period of
dynamic cellular rearrangements that establish the three tissue germ layers of ectoderm, mesoderm, and
endoderm in the embryo. One notable cellular rearrangement in gastrulation is the collective migration of the
mesendoderm along the blastocoel roof. Our laboratory identified α5ß1 integrin adhesion to fibronectin as a
critical regulator of mesendoderm motility in gastrulation. During collective mesendoderm migration, the front
row of migrating cells (leader cells) establishes substantial traction stress on the fibronectin extracellular matrix
through α5ß1 integrin that allows for cells in rows behind the leader cells (follower cells) to be pulled forward.
While the morphogenetic movements of gastrulation have been characterized, the metabolic processes that
support these energetically expensive movements remain poorly understood. The experiments proposed
herein will aim to unveil the mechanisms that integrate mechanical and metabolic signals in collective
mesendoderm motility. Preliminary live imaging of mitochondrial activity and localization in collectively
migrating mesendoderm explants supports the hypothesis that α5ß1 integrin mechanotransduction is a potent
inducer of mitochondrial activity and recruitment to adhesions. In Specific Aim 1, we will test the role of α5ß1
integrin in organizing mitochondrial activity and localization, the spatial distribution of metabolites, and rates of
glycolysis and mitochondrial respiration. We will induce differential activation of α5ß1 integrin in mesendoderm
explants and dissociated primary cells via various fibronectin fusion proteins and varied mechanical
environments. We will also modulate α5ß1 integrin activation in the mesendoderm of intact embryos via
integrin-targeted monoclonal antibodies. In Specific Aim 2, we will explore the effects of mitochondrial and
metabolic dynamic regulators on collective mesendoderm migration using live, high spatiotemporal resolution
imaging of mitochondrial activity, mitochondrial localization, the spatial distribution of metabolites, and the
function of metabolic regulatory proteins within the context of α5ß1 integrin-driven collective mesendoderm
migration. In summary, the experiments proposed will reveal how α5ß1 integrin adhesion and signaling impact
the metabolic processes that fuel energetically expensive gastrulation movements. By expanding our
knowledge of the mechanisms that engage and fuel tissue rearrangements in gastrulation, we will form a better
understanding of processes that contribute to congenital malformations in humans. This proposed fellowship
will be performed in a collaborative and supportive environment to develop the trainee’s scientific
independence and prepare him for a career as an independent physician-scientist in pediatric pathology. The
applicant will be mentored by a supportive dissertation mentor (sponsor) and expert dissertation committee.
1
项目总结/摘要[最多30行]
过去二十年来,生物医学的进步降低了美国的婴儿死亡率。
21世纪。然而,由形态发生失调引起的先天性畸形仍然是一种常见的疾病。
美国婴儿死亡率的主要原因。形态发生的一个特别关键的时期是原肠胚形成,
动态细胞重排,建立外胚层、中胚层和
胚胎中的内胚层。原肠胚形成中一个值得注意的细胞重排是细胞的集体迁移。
中内胚层沿着囊胚腔顶。我们的实验室鉴定了α 5 β 1整合素与纤连蛋白的粘附,
原肠胚形成过程中内胚层运动的关键调节因子。在中内胚层集体迁移过程中,
一排迁移细胞(前导细胞)在纤连蛋白细胞外基质上建立了大量的牵引应力
通过α 5 β 1整联蛋白,其允许前导细胞(跟随细胞)后面的行中的细胞被向前拉动。
虽然原肠胚形成的形态发生运动已被描述,但
支持这些耗费大量精力的运动的原因仍然知之甚少。提出的实验
本文旨在揭示机制,整合机械和代谢信号在集体
中内胚层运动线粒体活性的初步实时成像和集体定位
迁移中内胚层外植体支持α 5 β 1整联蛋白机械转导是一种有效的
线粒体活性的诱导剂和粘连的募集。在具体目标1中,我们将测试α 5 β 1的作用
整合素在组织线粒体活性和定位,代谢产物的空间分布,以及
糖酵解和线粒体呼吸。我们将诱导中内胚层中α 5 β 1整合素的差异活化
外植体和解离的原代细胞通过各种纤连蛋白融合蛋白和各种机械
环境.我们还将通过以下途径调节完整胚胎中内胚层α 5 β 1整合素的活化
整合素靶向单克隆抗体。在具体目标2中,我们将探讨线粒体和
使用实时高时空分辨率的集体中内胚层迁移的代谢动态调节剂
线粒体活性成像、线粒体定位、代谢物的空间分布以及
代谢调节蛋白在α 5 β 1整联蛋白驱动的集合中内胚层中的功能
迁移总之,所提出的实验将揭示α 5 β 1整合素粘附和信号传导如何影响
为原肠形成运动提供能量的代谢过程。通过扩大我们
了解原肠胚形成中参与和促进组织重排的机制,我们将形成一个更好的
了解导致人类先天性畸形的过程。拟议的研究金
将在一个合作和支持的环境中进行,以发展受训者的科学
独立性和准备他的职业生涯作为一个独立的医生,科学家在儿科病理学。的
申请人将由支持论文导师(赞助商)和专家论文委员会指导。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUSTAVO GAVREL PACHECO其他文献
GUSTAVO GAVREL PACHECO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 3.66万 - 项目类别:
Studentship
The Role of Chronic Pharmacological Adenosine Monophosphate-Activated Protein Kinase Activation at the Neuromuscular Junction
慢性药理学单磷酸腺苷激活蛋白激酶激活在神经肌肉接头处的作用
- 批准号:
575833-2022 - 财政年份:2022
- 资助金额:
$ 3.66万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Targeting adenosine monophosphate activated protein kinase (AMPK) to reduce cocaine relapse
靶向单磷酸腺苷激活蛋白激酶 (AMPK) 减少可卡因复吸
- 批准号:
10593045 - 财政年份:2022
- 资助金额:
$ 3.66万 - 项目类别:
Targeting adenosine monophosphate activated protein kinase (AMPK) to reduce cocaine relapse
靶向单磷酸腺苷激活蛋白激酶 (AMPK) 减少可卡因复吸
- 批准号:
10303255 - 财政年份:2022
- 资助金额:
$ 3.66万 - 项目类别:
The regulation of electrical coupling between neuroendocrine cells by cyclic adenosine monophosphate and protein kinase A
环磷酸腺苷与蛋白激酶A对神经内分泌细胞电耦合的调节
- 批准号:
565217-2021 - 财政年份:2021
- 资助金额:
$ 3.66万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Dissecting the Molecular Mechanisms of the Histone Acetyltransferase/Cyclic Adenosine Monophosphate Binding Protein Interactome Using Protein-Observed Fluorine NMR
使用蛋白质观察的氟 NMR 剖析组蛋白乙酰转移酶/环单磷酸腺苷结合蛋白相互作用组的分子机制
- 批准号:
1904071 - 财政年份:2019
- 资助金额:
$ 3.66万 - 项目类别:
Standard Grant
Osmotic stress regulation and the role of cyclic di-adenosine monophosphate (c-di-AMP) in Staphylococcus aureus
金黄色葡萄球菌的渗透应激调节和环二腺苷单磷酸 (c-di-AMP) 的作用
- 批准号:
318765828 - 财政年份:2016
- 资助金额:
$ 3.66万 - 项目类别:
Research Fellowships
Novel mechanisms controlling signaling by adenosine monophosphate-activated protein kinase, central regulator of energy homeostasis
通过单磷酸腺苷激活蛋白激酶控制信号传导的新机制,能量稳态的中央调节器
- 批准号:
FT130100988 - 财政年份:2014
- 资助金额:
$ 3.66万 - 项目类别:
ARC Future Fellowships
The roles of cyclic adenosine monophosphate (cAMP) in suppressive functions of regulatory T cells
环磷酸腺苷 (cAMP) 在调节性 T 细胞抑制功能中的作用
- 批准号:
25893115 - 财政年份:2013
- 资助金额:
$ 3.66万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Molecular mechanisms of cyclic Adenosine Monophosphate (AMP) induced apoptosis
环磷酸腺苷(AMP)诱导细胞凋亡的分子机制
- 批准号:
DP110100417 - 财政年份:2011
- 资助金额:
$ 3.66万 - 项目类别:
Discovery Projects