Missense Variants in Myosin Binding Protein C that Cause Hypertrophic Cardiomyopathy
导致肥厚性心肌病的肌球蛋白结合蛋白 C 的错义变异
基本信息
- 批准号:10752380
- 负责人:
- 金额:$ 71.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesArrhythmiaBindingBinding ProteinsBiological AssayBiological ProcessBiologyCardiac MyocytesChimeric ProteinsClinical TrialsComplementComplexCongestive Heart FailureCytoskeletonDNA Sequence AlterationDataDiseaseDisease PathwayDoseEchocardiographyElectrostaticsEligibility DeterminationFamilial Hypertrophic CardiomyopathyGene DeliveryGenesGeneticGoalsHeartHeart failureHeterozygoteHumanHypertrophic CardiomyopathyKnock-in MouseLabelLaboratoriesLeadLentivirus VectorMass Spectrum AnalysisMeasuresMediatingMissense MutationMolecular ChaperonesMolecular ConformationMutateMutationMyocardiumMyofibrilsMyosin ATPaseNeighborhoodsOutcome MeasurePathogenicityPatientsProteinsProteomicsPublishingReagentRegulationRelaxationResearch PersonnelRibonucleoproteinsRibosomesSarcomeresSurface PropertiesTacrolimus Binding Protein 1ATalentsTechniquesTertiary Protein StructureTestingTherapeuticTranslationsTreatment EfficacyVariantViral Vectoradeno-associated viral vectordelivery vehicleexperienceexperimental studygene replacementgene replacement therapygene therapygenetic variantimprovedin vivoinduced pluripotent stem cellinsightloss of functionmouse modelmutantmyosin-binding protein Cnovelpreventprimary outcomeprotein degradationprotein protein interactionresponsesecondary outcomeskillsstoichiometrysuccesssudden cardiac death
项目摘要
Patients with hypertrophic cardiomyopathy (HCM) experience a high symptomatic burden, heart failure and
lethal arrhythmias. While HCM has been recognized as a disease of the sarcomere for >30 years, the disease
mechanisms for sarcomeric gene variants are not well defined, limiting the precision and efficacy of treatment
options. Heterozygous variants in the gene myosin-binding protein C (MYBPC3) cause half of all cases of
familial HCM. About 15% of these are missense variants that cluster in interior protein domains C3 and C6
which have uncertain binding partners or function. Computational predictions combined with our
published and preliminary experimental data support the hypothesis that missense variants in C3 and
C6 domains lead to perturbation of multiple protein-protein interactions that are critical for the normal
function of MyBP-C (the protein encoded by MYBPC3). In Aim 1 we will apply TurboID proximity labeling to
wild-type (WT) and mutant MyBP-C. In preliminary data we have identified >200 novel and unique neighboring
proteins to WT MyBP-C. Comparing C3 and C6 mutants to wild-type MyBP-C, relative abundances of
sarcomeric, cytoskeletal and ribonucleoprotein complexes are reduced, while abundances of ribosomal and
chaperone proteins are increased. We will explore consequences of these altered interactions by assessing
changes in myosin conformation, local translation, and chaperone-mediate protein turnover. We expect to find
that interactions with multiple proteins of diverse function are either strengthened or weakened by the presence
of missense mutations in MyBP-C. Overcoming this perturbation in protein interactions with gene replacement
by wild-type MyBP-C is the focus of Aim 2 where we will test the hypothesis that the mutant protein can be
stoichiometrically replaced within the sarcomere by wild-type MyBP-C. We will transduce patient-derived
inducible-pluripotent cardiomyocytes expressing C3 or C6 missense variants with adeno-associated viral
vectors expressing wild-type MyBP-C or a lentiviral vector expressing a “titratable” wild-type MyBP-C-FKBP12
fusion protein that enables dose-response studies. The outcome measures will be the molar ratio of mutant to
wild-type protein, and contractile and relaxation velocities. In vivo studies of gene replacement in a new
Arg506Trp MYBPC3 knock-in mouse model will complement the hiPSC-CM experiments. This application
explores several novel aspects of MyBP-C biology and features unique reagents and advanced proteomic
techniques. Successful completion of these aims will uncover new biology in MyBP-C by defining an expanded
protein neighborhood, by revealing disease mechanisms for missense MYBPC3 variants, and by testing a
gene displacement strategy that leverages endogenous regulation of sarcomeric stoichiometry and could be
broadly applicable to missense variants in any sarcomere gene. Our investigative team, composed of a mix of
senior, highly experienced investigators and talented junior investigators with unique skill sets, is well poised to
achieve these goals.
肥厚型心肌病(HCM)患者经历高症状负担、心力衰竭和
致命的心律失常。虽然肥厚型心肌炎被认为是一种肌节疾病已有30年的历史,但这种疾病
肉瘤基因变异的机制尚未明确,限制了治疗的精确度和有效性。
选择。肌球蛋白结合蛋白C(MYBPC3)基因的杂合变异导致一半的病例
家族性肉芽肿病。其中约15%是错义变体,聚集在内部蛋白质结构域C3和C6中
它们具有不确定的结合伙伴或功能。计算预测与我们的
已发表的和初步的实验数据支持这一假设,即C3和C3中的错义变体
C6结构域导致多种蛋白质-蛋白质相互作用的扰动,这些相互作用对正常的
MyBP-C(MYBPC3编码的蛋白)的功能。在目标1中,我们将应用TurboID邻近标记来
野生型(WT)和突变体MyBP-C。在初步数据中,我们已经确定了>;200新的和独特的邻居
WT MyBP-C的蛋白质。比较C3和C6突变体与野生型MyBP-C,相对丰度
肌节、细胞骨架和核糖核蛋白复合体减少,而核糖体和
伴侣蛋白增加。我们将通过评估这些变化的交互作用来探索其后果
肌球蛋白构象、局部翻译和伴侣介导的蛋白质周转的变化。我们希望能找到
与多种功能不同的蛋白质的相互作用因存在而增强或减弱
MyBP-C的错义突变。用基因替换克服蛋白质相互作用中的这种扰动
通过野生型MyBP-C是目标2的焦点,在那里我们将检验突变蛋白可以
肌节内的化学计量比由野生型MyBP-C取代。我们将转导患者衍生的
用腺相关病毒诱导表达C3或C6错义变异体的多能心肌细胞
表达野生型MyBP-C的载体或表达可滴定的野生型MyBP-C-FKBP12的慢病毒载体
能够进行剂量反应研究的融合蛋白。结果衡量标准将是突变株与
野生型蛋白质,以及收缩和松弛速度。一种新的基因替换的体内研究
Arg506Trp MYBPC3敲入小鼠模型将补充HiPSC-CM实验。此应用程序
探索MyBP-C生物学的几个新方面,并以独特的试剂和高级蛋白质组为特色
技巧。成功完成这些目标将在MyBP-C中发现新的生物学,通过定义扩展的
通过揭示MYBPC3错义变体的致病机制,以及通过测试一种
利用肌节化学计量的内源性调节的基因置换策略,并可能是
广泛适用于任何肌节基因的错义变体。我们的调查小组,由一群
经验丰富的高级调查员和具有独特技能的才华横溢的初级调查员,准备好
实现这些目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharlene M Day其他文献
Sports Participation by Athletes With Cardiovascular Disease.
患有心血管疾病的运动员参加体育运动。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:24
- 作者:
Matthew Martinez;Michael J. Ackerman;George J. Annas;Aaron L. Baggish;Sharlene M Day;Kimberly G. Harmon;Jonathan H. Kim;Benjamin D Levine;Margot Putukian;Rachel Lampert - 通讯作者:
Rachel Lampert
Precision Medicine for Hypertensive Disorders of Pregnancy-Are We There Yet?
妊娠期高血压疾病的精准医学——我们做到了吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:24
- 作者:
Sadiya S Khan;Sharlene M Day - 通讯作者:
Sharlene M Day
Sharlene M Day的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharlene M Day', 18)}}的其他基金
SGLT-inhibitors in patients with hypertrophic cardiomyopathy
肥厚型心肌病患者的 SGLT 抑制剂
- 批准号:
10710875 - 财政年份:2023
- 资助金额:
$ 71.68万 - 项目类别:
Regulation of Proteasome Function in Cardiomyopathies
心肌病中蛋白酶体功能的调节
- 批准号:
8123276 - 财政年份:2009
- 资助金额:
$ 71.68万 - 项目类别:
Regulation of Proteasome Function in Cardiomyopathies
心肌病中蛋白酶体功能的调节
- 批准号:
7915541 - 财政年份:2009
- 资助金额:
$ 71.68万 - 项目类别:
Regulation of Proteasome Function in Cardiomyopathies
心肌病中蛋白酶体功能的调节
- 批准号:
8479419 - 财政年份:2009
- 资助金额:
$ 71.68万 - 项目类别:
Regulation of Proteasome Function in Cardiomyopathies
心肌病中蛋白酶体功能的调节
- 批准号:
8279232 - 财政年份:2009
- 资助金额:
$ 71.68万 - 项目类别:
Regulation of Proteasome Function in Cardiomyopathies
心肌病中蛋白酶体功能的调节
- 批准号:
7731608 - 财政年份:2009
- 资助金额:
$ 71.68万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 71.68万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 71.68万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 71.68万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 71.68万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 71.68万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 71.68万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 71.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 71.68万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 71.68万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 71.68万 - 项目类别:














{{item.name}}会员




