Mitochondrial Regulation of Interferon Response in Melanoma
黑色素瘤中干扰素反应的线粒体调节
基本信息
- 批准号:10752523
- 负责人:
- 金额:$ 4.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAdaptive Immune SystemAffectAntigen Presentation PathwayAntioxidantsAntitumor ResponseAutoimmuneCD8-Positive T-LymphocytesCRISPR screenCellular Metabolic ProcessChIP-seqChromatinChronicClustered Regularly Interspaced Short Palindromic RepeatsComplexDataDependenceDevelopmentDown-RegulationEffectivenessElectron TransportEventExpression ProfilingFatty AcidsFluorescence MicroscopyHeartImmune EvasionImmune responseImmune systemImmunosuppressionImmunotherapyIn VitroInnate Immune SystemInterferon Type IInterferon Type IIInterferon alphaInterferon-betaInterferonsKnock-outLinkMajor Histocompatibility ComplexMalignant NeoplasmsMediatingMelanoma CellMembrane PotentialsMetabolicMetabolismMitochondriaMusOxidative PhosphorylationPathway interactionsPhenotypePhosphorylationPlayProcessProductionProteinsRNAReactionReactive Oxygen SpeciesRegulationRoleScreening ResultSignal PathwaySignal TransductionSkin CancerSurfaceTestingTherapeuticTranscriptional ActivationTumor ImmunityUp-RegulationWestern BlottingWorkanti-tumor immune responsecancer cellcancer immunotherapycancer therapycell typedesensitizationfatty acid metabolismfatty acid oxidationimprovedin vivoinsightmelanomametabolomicsmitochondrial membranemitochondrial metabolismneoplastic cellnovelpharmacologicprogrammed cell death ligand 1responsetherapy developmenttranscription factortranscriptomicstumortumor metabolismtumor microenvironmenttumor progressiontumor-immune system interactions
项目摘要
PROJECT SUMMARY
Interferons (IFNs) are central orchestrators of tumor immunity and can elicit both pro-tumor and anti-tumor
responses depending on the cancer cell type, the type of IFN produced (e.g. a, b or g), duration of the signal,
and other factors in the tumor microenvironment (TME). In their anti-tumor role, IFNs induce expression of major
histocompatibility complex I (MHC-I) on the surface of tumor cells that mediates CD8+ T cell recognition and
killing. Paradoxically, IFNs also upregulate expression of CD8+ T cell inhibitory surface molecules such as
programmed death ligand 1 (PD-L1) to temper the immune response and avoid an autoimmune reaction. Thus,
IFNs play a dual and opposing role in cancer development, making a more complete understanding of the
contexts in which their pro- or anti-tumor functions predominate important for effective cancer therapy
development. Immune evasion can occur when malignant cells lose MHC-I and antigen processing and
presentation (APP) machinery or otherwise become desensitized to IFN signaling. Thus, finding ways to
reinvigorate these pathways has significant therapeutic potential. Interestingly, recent work from the sponsor’s
lab and others has shown that mitochondrial electron transport chain activity is required for IFN-induced MHC-I
expression. In addition, preliminary data show that chronic IFN stimulation in vitro reduces mitochondrial
oxidative phosphorylation (OXPHOS) in melanoma cells, suggesting that IFN signaling can also influence tumor
mitochondrial metabolism. To probe this novel regulatory link between the metabolic state of tumor cells and
their responses to IFN, a metabolism-targeted CRISPR knock-out screen was performed in mouse melanoma
cells. Results from this screen not only confirmed a requirement for mitochondrial OXPHOS in regulating IFN
signaling, but also implicated fatty acid metabolism and ROS. Based on these preliminary data, it is proposed
that mitochondrial OXPHOS, specifically mitochondrial fuel utilization and ROS production, can directly regulate
key IFN signaling steps, and that chronic IFN exposure leads to changes in mitochondrial metabolism that
facilitate immune evasion in melanoma. This overall hypothesis will be tested through completion of two specific
aims. Aim 1 is to determine which steps in the IFN signaling pathway are subject to mitochondrial OXPHOS-
mediated regulation and the precise mitochondrial metabolic signals involved. Aim 2 is to determine how reduced
mitochondrial OXPHOS and/or increased mitochondrial ROS are generating a suppressive tumor
microenvironment and if chronic type I IFN signaling elicits similar immunosuppressive effects as chronic type II
IFN exposure. This project will provide important new insights into the relationship between mitochondrial
metabolism and IFN responses during tumor progression that might be exploited to improve or reactivate anti-
tumor immune responses for better cancer treatment and augment cancer immunotherapy.
项目总结
干扰素(IFN)是肿瘤免疫的中枢协调器,既能诱导促肿瘤免疫,又能诱导抗肿瘤免疫
根据癌细胞类型、产生的干扰素的类型(例如A、B或G)、信号的持续时间、
以及肿瘤微环境(TME)中的其他因素。在其抗肿瘤作用中,IFN诱导主要
肿瘤细胞表面的组织相容性复合体I(MHC-I)介导CD8+T细胞识别和
杀戮。矛盾的是,IFN还上调CD8+T细胞抑制表面分子的表达,如
程序化死亡配体1(PD-L1),以缓和免疫反应,避免自身免疫反应。因此,
IFN在癌症的发展中扮演着双重和相反的角色,使人们对
它们的促肿瘤或抗肿瘤功能对有效的癌症治疗非常重要的背景
发展。当恶性细胞失去MHC-I和抗原处理时,就会发生免疫逃避
呈现(APP)机制或以其他方式对干扰素信号脱敏。因此,想方设法
重振这些通路具有显著的治疗潜力。有趣的是,赞助商的最新作品
Lab等人已经证明,干扰素诱导的MHC-I需要线粒体电子传输链的活性
表情。此外,初步数据显示,体外慢性干扰素刺激会减少线粒体
黑色素瘤细胞中的氧化磷酸化(OXPHOS),提示干扰素信号也可以影响肿瘤
线粒体代谢。为了探索肿瘤细胞代谢状态和肿瘤细胞之间的这种新的调控联系
他们对干扰素的反应是在小鼠黑色素瘤中进行的,这是一种针对代谢的CRISPR基因敲除筛查
细胞。这一筛选的结果不仅证实了线粒体OXPHOS在调节干扰素方面的需求
信号转导,但也与脂肪酸代谢和ROS有关。基于这些初步数据,提出了
线粒体OXPHOS,特别是线粒体的燃料利用和ROS的产生,可以直接调节
关键的干扰素信号步骤,以及长期接触干扰素会导致线粒体代谢的变化,从而
促进黑色素瘤的免疫逃逸。这一总体假设将通过完成两个具体的
目标。目的1是确定干扰素信号通路中的哪些步骤受到线粒体OXPHOS的影响。
介导的调节和精确的线粒体代谢信号。目标2是确定如何减少
线粒体OXPHOS和/或线粒体ROS增加正在产生抑制性肿瘤
微环境和慢性I型干扰素信号诱导的免疫抑制效应与慢性II型相似
干扰素暴露。这一项目将为线粒体之间的关系提供重要的新见解。
肿瘤进展过程中的代谢和干扰素反应可能被利用来改善或重新激活抗-
肿瘤免疫反应,以更好地治疗癌症,并加强癌症免疫治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Johnson其他文献
Melissa Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant














{{item.name}}会员




