3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
基本信息
- 批准号:10753836
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAcuteAddressAnatomyArrhythmiaAtrial FibrillationAtrioventricular BlockAutomationBiocompatible MaterialsBiologicalBiomanufacturingBundle-Branch BlockCalciumCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiac conduction systemCellsChronicCicatrixClinicalConnexin 43CoupledCouplingDataDefectDevelopmentDevicesDiseaseDisparateElectric CountershockElectronicsElectrophysiology (science)EngineeringEtiologyFailureFibrinFibrosisGap JunctionsGenesGoalsHeartHeart DiseasesHumanImplantImplantable DefibrillatorsIn VitroIncidenceInfarctionInjectionsInvestmentsIslandLeft ventricular structureLifeMapsModelingMyocardial InfarctionMyocardiumNatural regenerationNeedlesOpticsPatient-Focused OutcomesPatientsPhasePhenotypePhysiologicalPositioning AttributePumpRattusRiskSclerosisSignal TransductionSocial DistanceSurgical suturesSystemTechnologyTherapeuticTissue EngineeringTissuesbioelectricitybioprintingcalcium indicatorcardiac resynchronization therapycardiac tissue engineeringefficacy evaluationhigh resolution imagingimplantationimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinnovationmillimetermortality risknew technologynovelnovel therapeutic interventionnovel therapeuticspressurerepairedresiliencerestorationsuccesstechnology developmenttransmission process
项目摘要
Project Summary/Abstract
Multiple arrhythmia conditions manifest in the heart due to conduction disorder, a failure of conduction between
local islands of cardiomyocytes that are separated physically by millimeter (mm) to centimeter (cm) distances
of non- or poorly conductive tissue. While electronic devices such as implantable cardioverter-defibrillators
provide life-saving support for patients, their complications and lack of biological integration for long-term
conduction restoration limit their success. A novel therapeutic approach is to provide cell-based physical
connections between electrically active cardiomyocytes that could resynchronize cardiac electrophysiology to
reduce arrhythmia risk and promote efficient cardiac pumping. Our long-term goal is to re-engineer
electromechanical function of diseased hearts and specifically to address the critical need in clinical cardiac
electrophysiology practice for long-lasting, anatomical electrical connections with biological responsiveness
between disparate islands of cardiomyocytes in the heart. The objective of this proposal is to explore efficacy
of a novel “bioelectric thread” we are developing that is made of natural biomaterials and hiPSC-derived
cardiomyocytes (hiPSC-CMs). This technology is intended for cardiomyocyte-based coupling across mm to cm
distances via formation of a continuous bridge of hiPSC-CMs. Our central hypotheses are that delivery of a
confluent layer of cardiomyocytes along microthreads will create an electrical bridge via cellular gap junctions
with known conduction velocity, and that this bioelectric cell bridge will be established within one week to
enable electrophysiological synchronization and ameliorate conduction problems. Our preliminary data show
that hiPSC-CM conduction along microthreads transmits action potential signals and calcium transients across
at least 1.5 cm at 2.7 cm/s conduction velocity between two engineered cardiac tissues within 1 day in vitro.
We propose to advance the biomanufacturing of bioelectric threads using 3D bioprinting and develop an
injection-based device for precise implantation in the heart in Aim 1. We will assess our hypotheses in Aim 2
by evaluating electrical coupling and efficacy of cardiac synchrony in two different models of conduction
anomalies after implantation of bioelectric threads. The parallel aims develop critically important technologies
in tissue engineering to advance regeneration of cardiac conduction. The development of novel therapies for
durable, biologically responsive conduction is significant because failure of current approaches in patients are
associated with increased arrhythmia and mortality risk, necessitating novel solutions. This project is innovative
in its use of 3D bioprinting for biomanufacturing of bioelectric threads, development of a delivery system for
precise local implant in the heart, and evaluation of efficacy in diverse models of conduction disorder. The
successful development of this technology requires investment in this early phase, and in doing so, it is likely
that bioelectric threads will move the field of cardiac conduction repair into a new era, where regeneration of
native-like anatomy and function becomes an attractive strategy for patients with cardiac conduction defects.
项目总结/摘要
由于传导障碍,在心脏中表现出多种心律失常状况,
心肌细胞的局部岛,物理上以毫米(mm)至厘米(cm)的距离分开
不导电或导电性差的组织。虽然诸如植入式心律转复器之类的电子设备
为患者及其并发症和长期缺乏生物整合提供救生支持
传导恢复限制了它们的成功。一种新的治疗方法是提供基于细胞的物理治疗。
电活性心肌细胞之间的联系,可以使心脏电生理学,
降低心律失常风险,促进有效的心脏泵血。我们的长期目标是重新设计
特别是为了解决临床心脏病的关键需求,
具有生物反应性的持久解剖电连接的电生理学实践
心脏中不同的心肌细胞岛之间。本提案的目的是探索有效性
我们正在开发一种新型的“生物电线”,它由天然生物材料和hiPSC衍生的
心肌细胞(hiPSC-CM)。该技术旨在用于跨mm到cm的基于心肌细胞的偶联
通过形成hiPSC-CM的连续桥来实现距离。我们的中心假设是,
心肌细胞沿着微丝的汇合层将通过细胞间隙连接产生电桥
以已知的传导速度,这个生物电细胞桥将在一周内建立,
使电生理同步并改善传导问题。我们的初步数据显示
hiPSC-CM传导沿着微线程传递动作电位信号和钙瞬变
在2.7cm/s的传导速度下,两个工程化心脏组织之间在体外1天内至少有1.5cm。
我们建议使用3D生物打印推进生物电线程的生物制造,并开发一种
目标1中用于精确植入心脏的注射式器械。我们将在目标2中评估我们的假设
通过评估两种不同传导模型中的电耦合和心脏同步性的功效,
植入生物电线后的异常。平行的目标是开发至关重要的技术
组织工程学来促进心脏传导的再生。新疗法的发展
持久的、生物响应的传导是重要的,因为当前方法在患者中的失败是
与增加的心律失常和死亡风险相关,需要新的解决方案。这个项目是创新的
在其用于生物电线的生物制造的3D生物打印的使用中,
心脏中的精确局部植入,以及在不同传导障碍模型中的疗效评估。的
要成功地开发这项技术,就需要在早期阶段进行投资,这样做,
生物电线将使心脏传导修复领域进入一个新时代,
类似天然的解剖结构和功能对于具有心脏传导缺陷的患者来说成为有吸引力的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kareen LK Coulombe其他文献
Kareen LK Coulombe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kareen LK Coulombe', 18)}}的其他基金
Regenerating the Heart with Engineered Human Cardiac Tissue
用工程人体心脏组织再生心脏
- 批准号:
8534814 - 财政年份:2012
- 资助金额:
$ 25.43万 - 项目类别:
Regenerating the Heart with Engineered Human Cardiac Tissue
用工程人体心脏组织再生心脏
- 批准号:
8352229 - 财政年份:2012
- 资助金额:
$ 25.43万 - 项目类别:
Regenerating the Heart with Engineered Human Cardiac Tissue
用工程人体心脏组织再生心脏
- 批准号:
8780806 - 财政年份:2012
- 资助金额:
$ 25.43万 - 项目类别:
Regenerating the Heart with Engineered Human Cardiac Tissue
用工程人体心脏组织再生心脏
- 批准号:
8826171 - 财政年份:2012
- 资助金额:
$ 25.43万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 25.43万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 25.43万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)