Exploring arsenic and its metabolites in a transgenic model

在转基因模型中探索砷及其代谢物

基本信息

  • 批准号:
    7842476
  • 负责人:
  • 金额:
    $ 22.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Among the most serious issues confronting the global public health community is the long term consequence of arsenic ingestion in drinking water, a situation that has affected an estimated 100 million people worldwide, albeit disproportionately so in Bangladesh and West Bengal owing to the widespread provision of wells drawing arsenic-laced groundwater. Though arsenic is a well-known acute poison of oxidative phosphorylation when ingested in large quantities, chronic, low-level exposure leads to a variety of pathologies, among which are numerous forms of cancer. Mechanistically it has proven difficult to assign the specific cause of arsenic-induced cancer, though DNA and/or chromosomal aberrations typically accompany its appearance, and there has been much debate regarding whether or not arsenic can act as a complete carcinogen. Moreover, progress in these areas has been hampered by a relative lack of suitable animal models. Recently, the realization that metabolic methylation of arsenic may actually lead to a more potent carcinogen rather than to its presumed detoxification has prompted interest in the mechanism of methylation, the species formed, and the possibility that polymorphisms in the gene(s) involved in uptake, metabolism and excretion of arsenic may have profound effects on susceptibility of exposed individuals. To address some of these issues with a well-defined, genetically amenable, in vivo system we propose to create a Drosophila transgenic model, in which control, and precise analysis, of arsenic methylation (catalyzed by human gene variants that occur naturally in the population) can be married with a variety of in vivo assays investigating specific features of DNA metabolism (oxidative damage, strand breakage, recombination), cellular response (chromosomal aberrations, cell cycle aberrations), and carcinogenic potential via tumor formation in a transplantation assay. With the enormous versatility available in the Drosophila system, allowing controllable over- and underexpression of virtually any endogenous gene to be easily achieved, it is anticipated that critical molecular pathways intersected by arsenic and its methylated metabolites can be identified as a result of phenotypic variation occurring in one or more of the above assays when tested in such altered genetic backgrounds. Thus, we propose that a model higher eukaryotic organism, one that has consistently proved to be an unparalleled resource in uncovering critical molecular features of numerous human pathological conditions, can be harnessed to shed light on a vitally important toxicogenetic problem. PUBLIC HEALTH RELEVANCE: The long-term ingestion of arsenic via drinking water by human populations in many parts of the world has proven to be one of the largest global public health disasters of modern times owing to the variety of detrimental health consequences that ensue, including numerous forms of organ cancer. Though much of interest has been learned from studies in cultured cells, investigation of the mechanisms by which this toxic metal affects biological pathways (particularly in its ability to cause cancer) has been hampered by a relative lack of good animal models that duplicate the human pathologies. We aim to develop a model for arsenic cellular toxicity and tumorigenesis by introducing critical human genes involved in arsenic metabolism into the fruit fly, Drosophila, where a combination of assays, allied to the unparalleled genetic manipulability of this organism, are anticipated to shed new light on questions related to how arsenic induces cancer and why individuals show widely variable susceptibility to its effects.
描述(由申请人提供):全球公共卫生界面临的最严重问题之一是饮用水中砷摄入的长期后果,这种情况影响了全世界约1亿人,尽管在孟加拉国和西孟加拉,由于广泛提供抽取含砷地下水的威尔斯井,这种情况不成比例。虽然砷是一种众所周知的氧化磷酸化急性毒物,但大量摄入时,慢性低水平接触会导致多种病理,其中包括多种形式的癌症。从机理上讲,砷诱发癌症的具体原因很难确定,尽管DNA和/或染色体畸变通常伴随着它的出现,而且关于砷是否可以作为一种完全的致癌物存在很大的争论。此外,由于相对缺乏合适的动物模型,这些领域的进展受到阻碍。最近,认识到砷的代谢甲基化实际上可能导致更强的致癌物,而不是其假定的解毒,促使人们对甲基化的机制,形成的物种,以及参与砷的吸收,代谢和排泄的基因多态性可能对暴露个体的易感性产生深远影响的可能性产生兴趣。为了解决这些问题与一个明确的,遗传上可行的,在体内系统,我们建议建立一个果蝇转基因模型,其中控制和精确分析,砷甲基化(由人群中自然发生的人类基因变异催化)可以与研究DNA代谢特定特征的各种体内测定结合(氧化损伤、链断裂、重组)、细胞反应(染色体畸变、细胞周期畸变)和通过移植测定中的肿瘤形成的致癌潜力。由于果蝇系统具有巨大的多功能性,可以很容易地实现几乎任何内源性基因的可控过表达和低表达,因此可以预期,当在这种改变的遗传背景下进行测试时,由于上述一种或多种测定中发生的表型变异,可以鉴定出砷及其甲基化代谢物抑制的关键分子途径。因此,我们建议,一个模式高等真核生物,一个一直被证明是一个无与伦比的资源,在揭示许多人类病理条件的关键分子特征,可以利用阐明一个至关重要的毒理学问题。公共卫生相关性:世界许多地区的人口通过饮用水长期摄入砷已被证明是现代最大的全球公共卫生灾难之一,因为随之而来的各种有害健康后果,包括多种形式的器官癌症。尽管人们从培养细胞的研究中了解到了很多兴趣,但由于相对缺乏复制人类病理学的良好动物模型,对这种有毒金属影响生物途径(特别是其致癌能力)的机制的研究受到了阻碍。我们的目标是开发一个砷细胞毒性和肿瘤发生的模型,通过引入关键的人类基因参与砷代谢到果蝇,果蝇,在那里的组合试验,结盟的无与伦比的遗传操纵这种生物体,预计将揭示新的光有关的问题,砷如何诱发癌症,为什么个人表现出广泛的可变易感性,其影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IAIN L CARTWRIGHT其他文献

IAIN L CARTWRIGHT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IAIN L CARTWRIGHT', 18)}}的其他基金

Exploring arsenic and its metabolites in a transgenic model
在转基因模型中探索砷及其代谢物
  • 批准号:
    7740102
  • 财政年份:
    2009
  • 资助金额:
    $ 22.11万
  • 项目类别:
Environmental stability of heritable chromatin states
可遗传染色质状态的环境稳定性
  • 批准号:
    6518217
  • 财政年份:
    2001
  • 资助金额:
    $ 22.11万
  • 项目类别:
Environmental stability of heritable chromatin states
可遗传染色质状态的环境稳定性
  • 批准号:
    6321519
  • 财政年份:
    2001
  • 资助金额:
    $ 22.11万
  • 项目类别:
TOLERANCE AND SUSCEPTIBILITY IN HEAVY METAL PATHOLOGY
重金属病理学的耐受性和敏感性
  • 批准号:
    2156973
  • 财政年份:
    1995
  • 资助金额:
    $ 22.11万
  • 项目类别:
TOLERANCE AND SUSCEPTIBILITY IN HEAVY METAL PATHOLOGY
重金属病理学的耐受性和敏感性
  • 批准号:
    2156974
  • 财政年份:
    1995
  • 资助金额:
    $ 22.11万
  • 项目类别:
TOLERANCE AND SUSCEPTIBILITY IN HEAVY METAL PATHOLOGY
重金属病理学的耐受性和敏感性
  • 批准号:
    2444231
  • 财政年份:
    1995
  • 资助金额:
    $ 22.11万
  • 项目类别:
REGULATION OF EXDYSTEROID ACTIVATED GENES
类固醇激活基因的调控
  • 批准号:
    3292380
  • 财政年份:
    1986
  • 资助金额:
    $ 22.11万
  • 项目类别:
REGULATION OF EXDYSTEROID ACTIVATED GENES
类固醇激活基因的调控
  • 批准号:
    3292381
  • 财政年份:
    1986
  • 资助金额:
    $ 22.11万
  • 项目类别:
REGULATION OF EXDYSTEROID ACTIVATED GENES
类固醇激活基因的调控
  • 批准号:
    3292378
  • 财政年份:
    1986
  • 资助金额:
    $ 22.11万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 22.11万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了