Cloning and Analysis of a Gamete Fusion Gene
配子融合基因的克隆与分析
基本信息
- 批准号:7842376
- 负责人:
- 金额:$ 2.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAntibodiesAreaBacterial Artificial ChromosomesBioinformaticsBiological AssayBiological ModelsCell membraneCellsChimeric ProteinsChlamydomonasChlamydomonas reinhardtiiCloningComplementComplexContraceptive AgentsDataElectron MicroscopyEmployee StrikesExhibitsFailureFertilizationFluorescenceFluorescence MicroscopyFutureGene Expression RegulationGene ProteinsGenesGeneticGenomeGenomicsGerm CellsGoalsHomologous GeneHomology ModelingHumanInfertilityLabelLeadLearningMammalsMapsMembraneMembrane FusionMessenger RNAMethodsMicroscopicModelingMolecularMolecular AnalysisMolecular BiologyMolecular ModelsMorusMutateMutationNorthern BlottingOrganismPartner in relationshipPathway interactionsPhenotypePlasmidsPoint MutationProcessProductionProteinsRegulationReverse Transcriptase Polymerase Chain ReactionRoleSequence AnalysisSignal TransductionSiteSite-Directed MutagenesisStagingStructureSystemTailTemperatureTimebaseeggfollow-upfusion genemolecular modelingmutantnovelnovel strategiesprotein functionresearch studysperm celltool
项目摘要
DESCRIPTION (provided by applicant): Fertilization in Chlamydomonas reinhardtii, a novel model system for determining the protein(s) required for gamete fusion, may help define the basic requirements for sperm- egg fusion in more complex systems. Our long term goal is to understand the mechanism of fusion used by gametes. Mammalian fertilization requires so many interactions prior to fusion, that it is difficult to determine which genes/proteins are actually required for fusion of the sperm and egg membranes. While only a few proteins involved in gamete fusion have been identified, we have produced conditional and non-conditional (insertional) mutants of Chlamydomonas that carry out the early recognition, signaling and adhesion steps in mating but are blocked in the final stage of fertilization. In addition, this is the only available system in which gamete adhesion and fusion can be assayed independently and where mutations can therefore be defined as affecting plasma membrane adhesion or plasma membrane fusion. Using our insertional mutants, TAIL-PCR (Thermal asymmetric interlaced-PCR) has allowed us to identify 2 regions of the Chlamydomonas genome that may contain the gene that is defective in our insertional fusion-defective mutants. Transforming our fusion-defective mutants with bacterial artificial chromosomes (BACs) containing the wild type sequences from these identified regions of the genome, will allow us to determine if a gene in one of these regions can rescue fusion activity. Once we have identified the gene that is defective in our mutants, we will use our conditional mutants to map the functional domains of the identified protein. Fluorescence and electron microscopy as well as Northern blotting and RT-PCR will be used to study the regulation, production and localization of this protein and bioinformatics and molecular modeling will help us understand this protein's function. Future experiments may also involve site directed mutagenesis of the BAC sequences to allow further mapping of the protein's functional domains as well as real time RT-PCR, to learn more about the regulation of gene expression. Our hypothesis, supported by our genetic data, is that there is only a single gene controlling gamete fusion in Chlamydomonas. The power of Chlamydomonas genetics and molecular biology, the simplicity of the process of fertilization and the striking similarity of this system to fertilization in multicellular organisms makes it an important model system for studying the mechanism of gamete fusion. Understanding the molecular basis of gamete fusion in a simple model system may lead to new approaches for the treatment of human infertility (some types of infertility in mammals may be caused by the failure of sperm-egg fusion) as well as new types of contraceptives (molecules that impair fusion can exhibit contraceptive activity).
描述(由申请方提供):莱茵衣原体的受精是一种用于确定配子融合所需蛋白质的新型模型系统,可能有助于定义更复杂系统中精卵融合的基本要求。我们的长期目标是了解配子融合的机制。哺乳动物受精在融合之前需要如此多的相互作用,以至于难以确定精子和卵膜的融合实际上需要哪些基因/蛋白质。虽然只有少数参与配子融合的蛋白质已被确定,我们已经产生了条件和非条件(插入)衣原体的突变体进行早期识别,信号和粘附步骤在交配,但在受精的最后阶段被阻止。此外,这是唯一可用的系统,其中配子粘附和融合可以独立地进行测定,并且其中突变因此可以被定义为影响质膜粘附或质膜融合。使用我们的插入突变体,TAIL-PCR(热不对称交错PCR)使我们能够确定衣原体基因组的2个区域,这些区域可能包含在我们的插入融合缺陷突变体中有缺陷的基因。用含有来自这些鉴定的基因组区域的野生型序列的细菌人工染色体(BAC)转化我们的融合缺陷突变体,将使我们能够确定这些区域之一中的基因是否可以拯救融合活性。一旦我们确定了突变体中有缺陷的基因,我们将使用我们的条件突变体来定位所识别蛋白质的功能结构域。荧光显微镜、电子显微镜、北方印迹和RT-PCR等技术将用于研究该蛋白的调控、产生和定位,生物信息学和分子模拟将有助于我们了解该蛋白的功能。未来的实验还可能涉及BAC序列的定点诱变,以允许进一步绘制蛋白质的功能结构域以及真实的时间RT-PCR,以了解更多关于基因表达调控的信息。我们的假设,我们的遗传数据支持,是只有一个基因控制配子融合衣原体。衣原体遗传学和分子生物学的力量,受精过程的简单性以及该系统与多细胞生物中受精的惊人相似性使其成为研究配子融合机制的重要模型系统。在简单的模型系统中了解配子融合的分子基础可能会导致治疗人类不育症的新方法(哺乳动物中某些类型的不育症可能是由精卵融合失败引起的)以及新型避孕药(损害融合的分子可以表现出避孕活性)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charlene L. Forest其他文献
Charlene L. Forest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charlene L. Forest', 18)}}的其他基金
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 2.61万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 2.61万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 2.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists