Electrical Stimulation to Restore Three Dimensional Vestibular Sensation
电刺激恢复三维前庭感觉
基本信息
- 批准号:7931012
- 负责人:
- 金额:$ 27.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-24 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAdvanced DevelopmentAnatomyAnimalsAuditoryBilateralChinchilla (genus)ChronicClinicalClinical ResearchCochlear ImplantsCochlear NerveCouplingDataDependenceDevelopmentDimensionsDisabled PersonsDistalDoseElectric StimulationElectrodesElementsEquilibriumEsthesiaExhibitsEyeEye MovementsFinancial compensationGenerationsGentamicinsGoalsHair CellsHeadHead MovementsHistologyHumanImageImplantIndividualInjuryLabyrinthLifeMacacaMagnetic Resonance ImagingMeasurementMeasuresModelingMonkeysMotionNerveNervous system structurePatientsPositioning AttributePrimatesProceduresProsthesisProsthesis DesignProtocols documentationRehabilitation therapyRelative (related person)ResearchResolutionRodentRotationSpeech IntelligibilityStagingStimulusStructureSurgical ModelsTechniquesTestingTherapeuticTimeTranslationsVestibular NerveVestibular lossVisionabstractingcell injurydesignfunctional restorationimplantationimprovedmaculamodel designneurophysiologynonhuman primateresponserestorationscale uptechnology developmentvestibular prosthesisvestibulo-ocular reflex
项目摘要
Abstract
Bilateral loss of vestibular function (inner ear balance sensation) due to ototoxic hair cell injury is
disabling, with patients suffering disequilibrium and inability to maintain stable vision during head
movements typical of daily life. While most individuals with partial loss compensate through rehabilitative
strategies enlisting other senses, those who fail to compensate for profound loss have no good
therapeutic options. Because the vestibular nerve should be intact in many of these patients, electrical
stimuli encoding head rotation should be able to drive the nerve and restore sensation of head
movement, much like a cochlear implant restores auditory function. The proposed research is guided by
two broad goals. The first is to advance development toward an implantable neuroelectronic prosthesis
that restores function to people disabled by bilateral loss of vestibular sensation. The second is to drive
the field of vestibular neurophysiology though increased understanding of how vestibular nerve activity
encodes head motion and through development of technologies that enable use of previously impossible
experimental paradigms.
This project builds upon significant progress we have already made toward this goal, including: (1)
development of a multi-channel, head-mounted prosthesis able to encode three-dimensional (3D) head
rotation as electrical stimulation of three or more vestibular nerve branches; (2) characterization of the
3D angular vestibulo-ocular reflex (AVOR), vestibular nerve activity and endorgan histology in chinchillas
after vestibular ototoxic injury via gentamicin treatment; and (3) partial restoration of the AVOR via
prosthetic stimulation. These studies have identified channel interaction causing misalignment of eye and
head rotation as a key challenge to restoration of a normal 3D aVOR. We hypothesize that misalignment
is mainly due to spurious electrical stimulation of bystander vestibular nerve branches by inadequately
selective electrodes.
In this project, we will: (1) characterize the dependence of 3D AVOR eye rotations on stimulus
parameters; (2) determine the extent and time course of adaptation to chronic prosthetic input; (3)
develop and validate a precise model of current flow paths in the implanted labyrinth; and (4) extend our
studies from chinchillas to macaque monkeys, which have inner ear dimensions similar to humans. We
hypothesize that implanted macaques will exhibit much less misalignment than do chinchillas, and that
the modeling and design techniques developed in chinchillas can generalize accurately to primates.
Through extrapolation of electrode designs, stimulus optimization protocols, finite element models and
surgical techniques from rodents to nonhuman primates, this project will set the stage for rational design
and initial clinical studies of a multichannel vestibular prosthesis to aid individuals disabled by loss of
vestibular sensation.
摘要
由于耳毒性毛细胞损伤导致的双侧前庭功能(内耳平衡感)丧失,
致残,患者在头部活动期间视力不平衡,无法保持稳定视力
日常生活中典型的动作。虽然大多数部分损失的人通过康复来补偿,
战略招募其他感官,那些谁不能弥补深刻的损失没有好
治疗选择因为前庭神经应该是完整的,在许多这些患者,电
编码头部旋转的刺激应该能够驱动神经并恢复头部的感觉
运动,就像人工耳蜗恢复听觉功能一样。本研究的指导原则是:
两大目标。第一个是推进植入式神经电子假体的发展
它能帮助那些因双侧前庭感觉丧失而致残的人恢复功能。二是开车
前庭神经生理学领域虽然增加了对前庭神经活动如何
编码头部运动,并通过技术的发展,使以前不可能的使用
实验范例
该项目建立在我们已经朝着这一目标取得的重大进展的基础上,包括:(1)
能够对三维(3D)头部进行编码的多通道头戴式假体的开发
旋转作为三个或更多前庭神经分支的电刺激;(2)表征
灰鼠的三维角前庭眼反射、前庭神经活动和内器官组织学
庆大霉素治疗前庭耳毒性损伤后;(3)AVOR部分恢复,
假体刺激这些研究已经确定了导致眼睛错位的通道相互作用,
头部旋转是恢复正常3D aVOR关键挑战。我们假设错位
主要是由于旁观者前庭神经分支的虚假电刺激,
选择性电极。
在本课题中,我们将:(1)表征三维AVOR眼旋转对刺激的依赖性
参数;(2)确定慢性假肢输入的适应程度和时间过程;(3)
开发并验证植入迷路中电流流动路径的精确模型;以及(4)扩展我们的
从龙猫到猕猴的研究,它们的内耳尺寸与人类相似。我们
假设被植入的猕猴会比龙猫表现出更少的错位,
在龙猫身上开发的建模和设计技术可以准确地推广到灵长类动物。
通过外推电极设计、刺激优化方案、有限元模型和
从啮齿类动物到非人类灵长类动物的外科技术,该项目将为合理设计奠定基础
和多通道前庭假体的初步临床研究,以帮助因丧失
前庭感觉
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles C Della Santina其他文献
Charles C Della Santina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles C Della Santina', 18)}}的其他基金
Vestibular Implantation to Treat Adult-Onset Bilateral Vestibular Hypofunction
前庭植入治疗成人发病的双侧前庭功能减退症
- 批准号:
10396055 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Vestibular Implantation to Treat Adult-Onset Bilateral Vestibular Hypofunction
前庭植入治疗成人发病的双侧前庭功能减退症
- 批准号:
10625287 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Modulation of the Vestibular System Using Prosthetic Direct Current Stimulation
使用假体直流电刺激调节前庭系统
- 批准号:
10361536 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Modulation of the Vestibular System Using Prosthetic Direct Current Stimulation
使用假体直流电刺激调节前庭系统
- 批准号:
10577751 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Vestibular Implantation to Treat Adult-Onset Bilateral Vestibular Hypofunction
前庭植入治疗成人发病的双侧前庭功能减退症
- 批准号:
10190477 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Multichannel Vestibular Prosthesis Pilot Early Feasibility Trial
多通道前庭假体试点早期可行性试验
- 批准号:
9341205 - 财政年份:2013
- 资助金额:
$ 27.91万 - 项目类别:
Multichannel Vestibular Prosthesis Pilot Early Feasibility Trial
多通道前庭假体试点早期可行性试验
- 批准号:
8612561 - 财政年份:2013
- 资助金额:
$ 27.91万 - 项目类别:
Multichannel Vestibular Prosthesis Pilot Early Feasibility Trial
多通道前庭假体试点早期可行性试验
- 批准号:
8735928 - 财政年份:2013
- 资助金额:
$ 27.91万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 27.91万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 27.91万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 27.91万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 27.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 27.91万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 27.91万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 27.91万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 27.91万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 27.91万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 27.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)