Statistical Methods for Integrative Analysis of Genomics and Proteomics Data
基因组学和蛋白质组学数据综合分析的统计方法
基本信息
- 批准号:7799039
- 负责人:
- 金额:$ 27.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectBehaviorBiologicalBiological MarkersBiological ModelsClinicalComplexComputing MethodologiesCoupledDNA copy numberDataData SetDependencyDevelopmentDiagnosticDiseaseDisease OutcomeGene ExpressionGene OrderGene ProteinsGenesGeneticGenomeGenomicsGoalsIndividualInterventionInvestigationLicensingMalignant NeoplasmsMeasurementMediatingMetalcaptaseMethodologyMethodsMiningModelingMolecularNatureNoiseOutcomePathway interactionsPatientsPerformancePhenotypePreventionProceduresProteinsProteomicsRNA-Protein InteractionRegulationResearchSample SizeSignal TransductionSourceStatistical MethodsStructureStudy modelsTechniquesTestingTherapeutic InterventionTreesUnited States National Institutes of Healthanalytical toolbaseclinically relevantcomplex biological systemscomputerized toolsdata integrationdisease phenotypegenome-wideimprovedinnovationinterestmRNA Expressionmalignant breast neoplasmmolecular markernovelnovel strategiesopen sourcepredictive modelingprognosticprotein expressionreal world applicationresearch studyresponsesimulationsuccesstooltumortumor growthtumor initiation
项目摘要
DESCRIPTION (provided by applicant): Tumors are complex biological systems. No single type of molecular approach fully elucidates tumor behavior, necessitating analysis at multiple levels encompassing genomics and proteomics. Therefore different types of data from numerous sources are now collected at a genome-wide scale, including: DNA copy number alterations, mRNA expression, protein expression measurements and many others. However, the full extent of biomedical information in these studies cannot be realized without effective statistical and computational methods. Thus, the long-term goal of this research is to develop innovative methods jointly modeling these different types of data to help uncover the large-scale organization of genes and proteins interacting. To tackle this challenge, this proposal begins in Aim 1 by developing new statistical and computational methods for identifying DNA/RNA/Protein interactions. We propose to use tools developed for graphics models and study conditional dependencies among genes/proteins with various conditional correlations. Aim 2 proposes novel approaches to integrate the interaction network with disease phenotypes to improve biomarker identification and clinical outcome prediction. We will derive modules of genes/proteins which are associated with disease initiation/progression, and use boosting procedures to incorporate the module information into the predictive models. Sparse regression techniques together with proper smooth regularization will be used to handle the high-dimensionality and to account for the local correlation in both aims. The proposal uses two breast cancer studies as motivating examples. But the tools develop here can be well generalized to other disease.
Success of this research will result in substantially improved statistical methods for large-scale integration studies, and thus help to increase mechanistic understanding of the contribution of genomic/proteomics alterations to tumor growth and progression, as well as facilitate the development of more effective molecular diagnostic and prognostic tests. Data from the two breast cancer studies will be used together with extensive simulation experiments to test and refine the methodology for real-world application.
描述(由申请人提供):肿瘤是复杂的生物系统。没有单一类型的分子方法完全阐明肿瘤行为,需要在包括基因组学和蛋白质组学在内的多个水平上进行分析。因此,现在在全基因组范围内收集来自许多来源的不同类型的数据,包括:DNA拷贝数改变,mRNA表达,蛋白质表达测量和许多其他数据。然而,在这些研究中的生物医学信息的全部程度不能实现没有有效的统计和计算方法。因此,这项研究的长期目标是开发创新方法,联合建模这些不同类型的数据,以帮助揭示基因和蛋白质相互作用的大规模组织。为了应对这一挑战,该提案从目标1开始,通过开发新的统计和计算方法来识别DNA/RNA/蛋白质相互作用。我们建议使用图形模型开发的工具,研究基因/蛋白质与各种条件相关性之间的条件依赖关系。目的2提出新的方法来整合相互作用网络与疾病表型,以改善生物标志物识别和临床结果预测。我们将推导出与疾病发生/进展相关的基因/蛋白质模块,并使用增强程序将模块信息纳入预测模型。稀疏回归技术和适当的平滑正则化将用于处理高维数据,并解释两个目标的局部相关性。该提案使用两项乳腺癌研究作为激励性例子。但这里开发的工具可以很好地推广到其他疾病。
这项研究的成功将大大改善大规模整合研究的统计方法,从而有助于提高对基因组/蛋白质组学改变对肿瘤生长和进展的贡献的机制理解,并促进更有效的分子诊断和预后测试的发展。来自两项乳腺癌研究的数据将与广泛的模拟实验一起使用,以测试和改进现实世界应用的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pei Wang其他文献
Effects of CO2 on gas evolution and char structure formation during lump coal pyrolysis at elevated pressures
CO2 对块煤高压热解过程中气体逸出和焦结构形成的影响
- DOI:
10.1016/j.jaap.2013.08.003 - 发表时间:
2013-11 - 期刊:
- 影响因子:6
- 作者:
Pei Wang;Lunjing Yan;Changlong Liu;Kechang Xie - 通讯作者:
Kechang Xie
Pei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pei Wang', 18)}}的其他基金
Mechanisms of pancreatic cancer initiation and progression from normal human pancreatic tissue
正常人胰腺组织中胰腺癌发生和进展的机制
- 批准号:
10363688 - 财政年份:2020
- 资助金额:
$ 27.31万 - 项目类别:
Identify tumor suppressor driver genes of pancreatic ductal adenocarcinoma
鉴定胰腺导管腺癌的抑癌驱动基因
- 批准号:
10089422 - 财政年份:2020
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of pancreatic cancer initiation and progression from normal human pancreatic tissue
正常人胰腺组织中胰腺癌发生和进展的机制
- 批准号:
9886096 - 财政年份:2020
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of pancreatic cancer initiation and progression from normal human pancreatic tissue
正常人胰腺组织中胰腺癌发生和进展的机制
- 批准号:
10577831 - 财政年份:2020
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of pancreatic cancer initiation and progression from normal human pancreatic tissue
正常人胰腺组织中胰腺癌发生和进展的机制
- 批准号:
10112846 - 财政年份:2020
- 资助金额:
$ 27.31万 - 项目类别:
The Hippo signaling pathway in pancreatic epithelial cells orchestrate the inflammatory response R01
胰腺上皮细胞中的 Hippo 信号通路协调炎症反应 R01
- 批准号:
10165700 - 财政年份:2017
- 资助金额:
$ 27.31万 - 项目类别:
Novel model to study PDAC using normal human pancreatic tissue
使用正常人胰腺组织研究 PDAC 的新模型
- 批准号:
9502935 - 财政年份:2017
- 资助金额:
$ 27.31万 - 项目类别:
The Hippo signaling pathway in pancreatic epithelial cells orchestrate the inflammatory response R01
胰腺上皮细胞中的 Hippo 信号通路协调炎症反应 R01
- 批准号:
9311258 - 财政年份:2017
- 资助金额:
$ 27.31万 - 项目类别:
Statistical Methods for Integrative Analysis of Genomics and Proteomics Data
基因组学和蛋白质组学数据综合分析的统计方法
- 批准号:
7523950 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Statistical Methods for Integrative Analysis of Genomics and Proteomics Data
基因组学和蛋白质组学数据综合分析的统计方法
- 批准号:
8281458 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Research Grant