Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays

探针级数据的低秩近似及其应用于外显子平铺阵列

基本信息

  • 批准号:
    7860383
  • 负责人:
  • 金额:
    $ 20.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-11 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Findings from the Human Genome Project highlight the intricacy of interactions between cell regulation, genes and proteins. It is generally understood that biological functions and biological activities are controlled by subsets of genes interacting with proteins in a highly controlled manner. High throughput technologies such as microarrays are valuable for studying a large number of biological components simultaneously, but sound conclusions from these technologies depend on appropriate statistical analyses of the genomic/proteomic data. The long-term objective of this proposal is to develop appropriate statistical tools to explore gene/protein interactions and to discover how these interactions function in biological activities (e.g. induction of disease phenotype). This proposal concerns the analysis of short oligonucleotide data, as in GeneChip studies and exon tiling arrays. Low-rank approximations to the expression data matrices play a central role in the proposed research. The specific aims are: (1) to develop a fast and robust low-rank algorithm to perform low-rank approximation to a data matrix that is subject to outliers; (2) to develop diagnostic tools and statistical tests for determining whether a low-rank representation is adequate to capture gene expression profiles; (3) to develop both nonparametric and likelihood-based approaches for flagging and detecting alternative splicing with exon tiling arrays. Singular value decomposition is a starting point for the proposed work towards those specific aims. Alternating robust (outlier resistant) regression methods will be used for Aims (1) and (3). Likelihood- based and data adaptive methods will be developed for Aims (2) and (3). The proposed research distinguishes itself from most of the existing statistical work on microarray data, as it focuses on probe-level rather than gene-level data. The investigators believe that the standard uni-dimensional summary of gene expression data could lead to loss of important information. PUBLIC HEALTH RELEVANCE: Successful completion of the proposed research will lead to efficient and effective statistical tools for analyzing microarray data that have wide-ranging applications in biomedical and public health research, as evidenced by the recent discovery of target genes for cervical cancer and prostate cancer. Those tools are needed to support better applications of microarray technology in clinical and biomedical research.
描述(由申请人提供):人类基因组计划的发现突出了细胞调控、基因和蛋白质之间相互作用的复杂性。一般认为,生物学功能和生物学活性由与蛋白质相互作用的基因子集以高度受控的方式控制。高通量技术如微阵列对于同时研究大量生物组分是有价值的,但是来自这些技术的合理结论依赖于对基因组/蛋白质组数据的适当统计分析。该提案的长期目标是开发适当的统计工具,以探索基因/蛋白质相互作用,并发现这些相互作用如何在生物活动中发挥作用(例如诱导疾病表型)。该建议涉及短寡核苷酸数据的分析,如基因芯片研究和外显子拼接阵列。表达数据矩阵的低秩近似在所提出的研究中起着核心作用。具体目标是:(1)开发一种快速而稳健的低秩算法,以执行低秩近似的数据矩阵,是受离群值;(2)开发诊断工具和统计测试,以确定是否低秩表示是足够的捕获基因表达谱;(3)开发非参数和基于似然的方法,用于标记和检测选择性剪接与外显子拼接阵列。奇异值分解是实现这些具体目标的拟议工作的起点。交替稳健(抗离群值)回归方法将用于目的(1)和(3)。将为目标(2)和(3)开发基于似然法和数据自适应方法。这项研究与大多数现有的微阵列数据统计工作不同,因为它关注的是探针水平而不是基因水平的数据。研究人员认为,基因表达数据的标准一维摘要可能导致重要信息的丢失。公共卫生相关性:成功完成拟议的研究将导致高效和有效的统计工具,用于分析微阵列数据,在生物医学和公共卫生研究中有广泛的应用,最近发现的宫颈癌和前列腺癌的靶基因证明。需要这些工具来支持微阵列技术在临床和生物医学研究中的更好应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuming He其他文献

Xuming He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuming He', 18)}}的其他基金

Nonparametric Analysis of Reverse-Phase Protein Lysate Array Data
反相蛋白裂解物阵列数据的非参数分析
  • 批准号:
    7860689
  • 财政年份:
    2009
  • 资助金额:
    $ 20.87万
  • 项目类别:
Nonparametric Analysis of Reverse-Phase Protein Lysate Array Data
反相蛋白裂解物阵列数据的非参数分析
  • 批准号:
    7659879
  • 财政年份:
    2009
  • 资助金额:
    $ 20.87万
  • 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
  • 批准号:
    7918733
  • 财政年份:
    2009
  • 资助金额:
    $ 20.87万
  • 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
  • 批准号:
    7651231
  • 财政年份:
    2008
  • 资助金额:
    $ 20.87万
  • 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
  • 批准号:
    7468238
  • 财政年份:
    2008
  • 资助金额:
    $ 20.87万
  • 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
  • 批准号:
    8072159
  • 财政年份:
    2008
  • 资助金额:
    $ 20.87万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了