Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
基本信息
- 批准号:8072159
- 负责人:
- 金额:$ 20.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-11 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlternative SplicingBiologicalBiological ProcessBiomedical ResearchCationsCell physiologyCellsClinical ResearchComputer softwareDataDatabasesDetectionDiagnosticEnvironmentExonsGene ExpressionGene ProteinsGene TargetingGenesGenomicsHuman GenomeHuman Genome ProjectLeadLiteratureMalignant neoplasm of cervix uteriMalignant neoplasm of prostateMethodsMicroarray AnalysisModelingMolecular ProfilingOligonucleotidesPlayProteinsProteomicsRNA SplicingRegulationResearchResearch PersonnelResistanceRoleStatistical MethodsStructureTechnologyTestingWorkbasedata structuredisease phenotypehigh throughput technologyprobe-level datapublic health researchsoundtoolvector
项目摘要
DESCRIPTION (provided by applicant): Findings from the Human Genome Project highlight the intricacy of interactions between cell regulation, genes and proteins. It is generally understood that biological functions and biological activities are controlled by subsets of genes interacting with proteins in a highly controlled manner. High throughput technologies such as microarrays are valuable for studying a large number of biological components simultaneously, but sound conclusions from these technologies depend on appropriate statistical analyses of the genomic/proteomic data. The long-term objective of this proposal is to develop appropriate statistical tools to explore gene/protein interactions and to discover how these interactions function in biological activities (e.g. induction of disease phenotype). This proposal concerns the analysis of short oligonucleotide data, as in GeneChip studies and exon tiling arrays. Low-rank approximations to the expression data matrices play a central role in the proposed research. The specific aims are: (1) to develop a fast and robust low-rank algorithm to perform low-rank approximation to a data matrix that is subject to outliers; (2) to develop diagnostic tools and statistical tests for determining whether a low-rank representation is adequate to capture gene expression profiles; (3) to develop both nonparametric and likelihood-based approaches for flagging and detecting alternative splicing with exon tiling arrays. Singular value decomposition is a starting point for the proposed work towards those specific aims. Alternating robust (outlier resistant) regression methods will be used for Aims (1) and (3). Likelihood- based and data adaptive methods will be developed for Aims (2) and (3). The proposed research distinguishes itself from most of the existing statistical work on microarray data, as it focuses on probe-level rather than gene-level data. The investigators believe that the standard uni-dimensional summary of gene expression data could lead to loss of important information.
描述(由申请人提供):来自人类基因组计划的发现强调了细胞调控、基因和蛋白质之间相互作用的复杂性。人们普遍认为,生物功能和生物活性是由与蛋白质相互作用的基因亚群以高度受控的方式控制的。微阵列等高通量技术对于同时研究大量生物成分很有价值,但这些技术的可靠结论取决于对基因组/蛋白质组学数据的适当统计分析。该提案的长期目标是开发适当的统计工具,以探索基因/蛋白质相互作用,并发现这些相互作用如何在生物活动中起作用(例如诱导疾病表型)。该建议涉及短寡核苷酸数据的分析,如基因芯片研究和外显子平铺阵列。表达式数据矩阵的低秩近似在本研究中起着核心作用。具体目标是:(1)开发一种快速、鲁棒的低秩算法,对受离群值影响的数据矩阵进行低秩逼近;(2)开发诊断工具和统计测试,以确定低秩表示是否足以捕获基因表达谱;(3)开发非参数和基于似然的方法来标记和检测外显子平铺阵列的备选剪接。奇异值分解是实现这些具体目标的建议工作的起点。交替鲁棒(抗离群值)回归方法将用于目标(1)和(3)。基于似然和数据自适应的方法将为目标(2)和(3)发展。拟议的研究与大多数现有的微阵列数据统计工作不同,因为它侧重于探针水平而不是基因水平的数据。研究人员认为,基因表达数据的标准单维总结可能导致重要信息的丢失。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sieve Maximum Likelihood Estimation for Doubly Semiparametric Zero-Inflated Poisson Models.
- DOI:10.1016/j.jmva.2010.05.003
- 发表时间:2010-10
- 期刊:
- 影响因子:1.6
- 作者:He, Xuming;Xue, Hongqi;Shi, Ning-Zhong
- 通讯作者:Shi, Ning-Zhong
Inference on Low-Rank Data Matrices with Applications to Microarray Data.
低秩数据矩阵的推断及其在微阵列数据中的应用。
- DOI:10.1214/09-aoas262supp
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Feng,Xingdong;He,Xuming
- 通讯作者:He,Xuming
Biomarker Detection in Association Studies: Modeling SNPs Simultaneously via Logistic ANOVA.
结合研究中的生物标志物检测:通过逻辑方差分析同时对SNP进行建模。
- DOI:10.1080/01621459.2014.928217
- 发表时间:2014-12-01
- 期刊:
- 影响因子:3.7
- 作者:Jung Y;Huang JZ;Hu J
- 通讯作者:Hu J
Estimating equation-based causality analysis with application to microarray time series data.
- DOI:10.1093/biostatistics/kxp005
- 发表时间:2009-07
- 期刊:
- 影响因子:2.1
- 作者:Jianhua Hu;F. Hu
- 通讯作者:Jianhua Hu;F. Hu
Bent line quantile regression with application to an allometric study of land mammals' speed and mass.
- DOI:10.1111/j.1541-0420.2010.01436.x
- 发表时间:2011-03
- 期刊:
- 影响因子:1.9
- 作者:Li C;Wei Y;Chappell R;He X
- 通讯作者:He X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuming He其他文献
Xuming He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuming He', 18)}}的其他基金
Nonparametric Analysis of Reverse-Phase Protein Lysate Array Data
反相蛋白裂解物阵列数据的非参数分析
- 批准号:
7860689 - 财政年份:2009
- 资助金额:
$ 20.65万 - 项目类别:
Nonparametric Analysis of Reverse-Phase Protein Lysate Array Data
反相蛋白裂解物阵列数据的非参数分析
- 批准号:
7659879 - 财政年份:2009
- 资助金额:
$ 20.65万 - 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
- 批准号:
7918733 - 财政年份:2009
- 资助金额:
$ 20.65万 - 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
- 批准号:
7651231 - 财政年份:2008
- 资助金额:
$ 20.65万 - 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
- 批准号:
7468238 - 财政年份:2008
- 资助金额:
$ 20.65万 - 项目类别:
Low-rank Approximation to Probe-level Data with Application to Exon Tiling Arrays
探针级数据的低秩近似及其应用于外显子平铺阵列
- 批准号:
7860383 - 财政年份:2008
- 资助金额:
$ 20.65万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.65万 - 项目类别:
Research Grant