A novel molecular diagnostic approach to classify lung cancers and predict respon

一种对肺癌进行分类并预测反应的新型分子诊断方法

基本信息

  • 批准号:
    7836572
  • 负责人:
  • 金额:
    $ 49.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (03) Biomarker Discovery and Validation, and specific Challenge Topic 03-CA-101, Fingerprints for the Early Detection and Treatment of Cancer. One of the most fundamental hurdles for the effective treatment of cancer is the heterogeneity of the disease. Because of differences in the molecular details responsible for the development and progression of a particular tumor, there can be profound differences in the course of disease even for tumors that appear similar or identical by standard pathological analysis. This problem is becoming more acute as new therapeutic compounds are developed that target specific signaling pathways or molecules. Such targeted therapies may be highly effective for only a small percentage of tumors. Reliable methods to predict which tumors will respond are thus essential if such therapies are to be used effectively. New molecular diagnostic methods to classify tumors, and thus predict response to specific therapies and provide prognostic information on the likelihood that the disease will spread or recur after therapy, hold great promise for more effective cancer therapy. Such methods, if available, will allow the physician and patient to choose the most effective course of treatment, while avoiding ineffective or unnecessary treatments that diminish quality of life for patients and financially burden the healthcare system. Many key biological activities of tumors are controlled by tyrosine phosphorylation, and the dysregulated activation of tyrosine kinases is well known to underlie the development of many tumors. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be use to predict the behavior of the tumor. However current methods to analyze tyrosine phosphorylation are not amenable to the comprehensive analysis of large numbers of human cancer specimens. In this proposal, we will use a novel phosphoproteomics platform, SH2 profiling, to profile non-small cell lung carcinoma (NSCLC) samples from human patients. NSCLC is a devastating disease that kills over 160,000 people per year in the U.S. Certain tyrosine kinases are frequently activated in NSCLC, and new drugs have been developed that target these kinases. In this project we will test whether SH2 profiling can be used to classify NSCLC for prediction and prognosis. If successful, these studies will set the stage for development of clinical tests that can be used to guide more effective treatment for lung cancer and other tumors. PUBLIC HEALTH RELEVANCE: Tumors vary greatly in the course of disease and in how they respond to specific therapies. Molecular diagnostic methods that can be used to classify tumors and predict their behavior have enormous potential to both increase the effectiveness of treatment, and decrease the suffering and cost associated with unnecessary or ineffective treatments. In this proposal, we will us a novel method to profile the global state of tyrosine phosphorylation in lung cancers, and assess whether it provides useful information that could be used to guide treatment.
描述(由申请人提供):本申请涉及广泛的挑战领域(03)生物标志物发现和验证,以及特定的挑战主题03-CA-101,癌症早期检测和治疗的指纹。有效治疗癌症的最根本障碍之一是疾病的异质性。由于负责特定肿瘤的发展和进展的分子细节的差异,即使对于通过标准病理学分析看起来相似或相同的肿瘤,疾病过程也可能存在深刻的差异。随着靶向特定信号通路或分子的新治疗化合物的开发,这个问题变得更加尖锐。这种靶向治疗可能只对一小部分肿瘤非常有效。因此,如果要有效地使用这些疗法,预测哪些肿瘤会有反应的可靠方法是必不可少的。新的分子诊断方法对肿瘤进行分类,从而预测对特定治疗的反应,并提供有关疾病在治疗后扩散或复发的可能性的预后信息,为更有效的癌症治疗带来了巨大的希望。如果可用,这些方法将允许医生和患者选择最有效的治疗过程,同时避免降低患者生活质量和给医疗保健系统带来经济负担的无效或不必要的治疗。肿瘤的许多关键生物学活性由酪氨酸磷酸化控制,并且众所周知酪氨酸激酶的失调激活是许多肿瘤发展的基础。因此,分析肿瘤的酪氨酸磷酸化的整体状态可能提供可用于预测肿瘤行为的丰富信息。然而,目前分析酪氨酸磷酸化的方法不适合于大量人类癌症标本的全面分析。在这项提案中,我们将使用一种新的磷酸化蛋白质组学平台,SH 2分析,从人类患者的非小细胞肺癌(NSCLC)样本。NSCLC是一种毁灭性的疾病,在美国每年导致超过160,000人死亡。某些酪氨酸激酶在NSCLC中经常被激活,并且已经开发了靶向这些激酶的新药。在这个项目中,我们将测试SH 2谱是否可以用于分类NSCLC的预测和预后。如果成功,这些研究将为临床试验的发展奠定基础,这些临床试验可用于指导肺癌和其他肿瘤的更有效治疗。 公共卫生相关性:肿瘤在病程和对特定治疗的反应方面差异很大。可用于对肿瘤进行分类并预测其行为的分子诊断方法具有巨大的潜力,可以提高治疗的有效性,并减少与不必要或无效治疗相关的痛苦和成本。在这项提案中,我们将使用一种新的方法来描述肺癌中酪氨酸磷酸化的整体状态,并评估它是否提供了可用于指导治疗的有用信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ERIC B. HAURA其他文献

ERIC B. HAURA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ERIC B. HAURA', 18)}}的其他基金

Overcoming resistance to KRAS inhibitors through a fragment-based chemoproteomics approach
通过基于片段的化学蛋白质组学方法克服对 KRAS 抑制剂的耐药性
  • 批准号:
    10722113
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
Targeting bidirectional signaling in lung stroma and cancer cells
靶向肺基质和癌细胞中的双向信号传导
  • 批准号:
    10227777
  • 财政年份:
    2017
  • 资助金额:
    $ 49.41万
  • 项目类别:
Precision lung cancer therapy design through multiplexed adapter measurement
通过多重适配器测量进行精准肺癌治疗设计
  • 批准号:
    10246394
  • 财政年份:
    2017
  • 资助金额:
    $ 49.41万
  • 项目类别:
Precision lung cancer therapy design through multiplexed adapter measurement
通过多重适配器测量进行精准肺癌治疗设计
  • 批准号:
    9759874
  • 财政年份:
    2017
  • 资助金额:
    $ 49.41万
  • 项目类别:
Precision lung cancer therapy design through multiplexed adapter measurement
通过多重适配器测量进行精准肺癌治疗设计
  • 批准号:
    9388399
  • 财政年份:
    2017
  • 资助金额:
    $ 49.41万
  • 项目类别:
Applying Chemical Biology to Target Deubiquitinating Enzymes in Lung Cancer
应用化学生物学靶向肺癌中的去泛素化酶
  • 批准号:
    9375662
  • 财政年份:
    2017
  • 资助金额:
    $ 49.41万
  • 项目类别:
Targeting bidirectional signaling in lung stroma and cancer cells
靶向肺基质和癌细胞中的双向信号传导
  • 批准号:
    9982983
  • 财政年份:
    2017
  • 资助金额:
    $ 49.41万
  • 项目类别:
Validation of EGFR Protein Complexes as Molecular Diagnostics
EGFR 蛋白复合物作为分子诊断的验证
  • 批准号:
    10221627
  • 财政年份:
    2016
  • 资助金额:
    $ 49.41万
  • 项目类别:
Validation of EGFR Protein Complexes as Molecular Diagnostics
EGFR 蛋白复合物作为分子诊断的验证
  • 批准号:
    10436863
  • 财政年份:
    2016
  • 资助金额:
    $ 49.41万
  • 项目类别:
Validation of EGFR Protein Complexes as Molecular Diagnostics
EGFR 蛋白复合物作为分子诊断的验证
  • 批准号:
    9927868
  • 财政年份:
    2016
  • 资助金额:
    $ 49.41万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了