The impact of alcohol addiction on circuit dynamics in the extended amygdala
酒精成瘾对扩展杏仁核回路动力学的影响
基本信息
- 批准号:7831588
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAcuteAddressAffectAlcohol abuseAlcohol dependenceAlcohol withdrawal syndromeAlcoholsAmygdaloid structureAnimalsAreaArtsAttentionBehavior DisordersBehavioralBiologicalBrainCaliforniaCellsCharacteristicsChronicCollaborationsCommunicationComplexComputational TechniqueComputersConsultCorticotropin-Releasing HormoneDataDevelopmentDopamineEconomicsElementsEmploymentEnvironmentFunctional disorderFutureGenerationsGoalsHealthHybridsImpact evaluationInstitutesInstitutionKnowledgeLightLong-Term PotentiationMethodologyMethodsMolecularNervous system structureNeuraxisNeuronal PlasticityNeuronsNeurophysiology - biologic functionNeurosciencesOccupationsOutputPathogenesisPatternPlayPopulationPrincipal InvestigatorProcessPropertyRecording of previous eventsRelapseResearchResearch InstituteResearch PersonnelResolutionRewardsRoleScienceScientistSecuritySeriesSignal TransductionSimulateStagingStimulusStressStructureStructure of terminal stria nuclei of preoptic regionSynapsesSystemTechniquesTechnologyTestingUniversitiesWithdrawalWorkaddictionalcohol abuse therapyalcohol effectalcohol researchbasebiological systemsdrug of abusedrug withdrawalexperienceinformation processinginnovationinnovative technologiesinterdisciplinary collaborationmultidisciplinaryneural circuitneuromechanismnew technologynovelprogramspublic health relevancerelating to nervous systemresearch studyresponsestria terminalistechnology development
项目摘要
DESCRIPTION (provided by applicant): This proposal addresses broad Challenge Area (06) 'Enabling Technologies' and specific Challenge Topic 06-AA-106, 'Technology Development for Analysis of Alcohol-Related Neural Circuits'. The applicants of this proposal have been conducting a successful interdisciplinary collaboration addressing the very scientific and technological challenges this Topic calls attention to. Clearly, advanced technologies for the analysis of alcohol-related neural circuits and dynamics have been underutilized in spite of the immense amount of data on the alcohol-affected molecular and cellular mechanisms that have been accumulated during the past two decades. Using state-of-the-art electrophysiological and computational techniques in the research of alcohol-impacted neural circuits would provide the opportunity for a better understanding of the circuit- and systemic level mechanisms that are closely related to the behavioral effects of addiction and withdrawal. In fact, this is the primary objective of our proposal. Work described under the two Specific Aims will include development and optimization of novel technologies previously not utilized in the research of alcohol-related neural circuits. Focusing on one the extended amygdala, one of the most important areas in the motivational/reward system of the brain, we propose a series of experiments with sophisticated electrophysiological methods that will shed light on the neural mechanisms of alcohol dependence and withdrawal from a systems neuroscience perspective. In the first Specific Aim we will characterize the integrative and dynamical properties of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST, a central element of the extended amygdala circuits) in relation to their intrinsic biophysical properties both in normal and in dependent animals. Next we will characterize how neuromodulatory inputs known to play important roles in alcohol dependence change the dynamical responses of jcBNST neurons. Here, we will use a computer-based electrophysiological technique referred to as dynamic clamp. This technique will allow us to analyze cellular dynamics and circuit interactions with great accuracy and temporal resolution while maintaining the neurons in a high conductance state, smilar to that in the intact brain. The novelty of this approach is that the dynamic clamp will show how they function in an active, temporally complex synaptic environment and how alcohol-related changes in their intrinsic properties impact their output. We will also be able to detect and analyze sophisticated forms of neural computation, such as cellular resonance and pattern selectivity previously not investigated in details. In the second Specific Aim we will study the effects of alcohol at circuit-level interactions, plasticity and modulation by dopamine and corticotropin releasing factor. For these experiments we will build a new electrophysiological system capable of simultaneously recording the spike activity of tens of neurons and delivering spatiotemporally structured stimulus patterns into the neural circuit. This multielectrode system will allow us to observe alcohol-related changes in the synaptic connectivity, signal transduction within the jcBNST and its overall network output to downstrem neuron populations. While in this project we will focus on a specific brain area that is known to be among the most impacted by alcohol and drugs of abuse, the wide applicability of the techniques we utilize will open possibilities for research addressing scientific and health problems related to other functions of the brain. This will strengthen the long-term impact of our research. In addition to the scientific benefits, this project will contribute to the development of the regional and national economy through innovation and job creation. Future economic security will be promoted through the immediate employment of an early stage investigator (the principal investigator) and two postdoctoral scholars. The innovative research program described in this proposal will open further possibilities for collaborations and the involvement of more motivated young scientists. The long term impact will be the generation of new knowledge providing an important contribution to the identification of therapeutical targets for the treatment of neural/behavioral disorders associated with alcohol addiction as well as to the development of new therapeutical targets for relapse. The proposed research will also contribute to possible development of new, innovative technologies applicable to biological systems and scientific challenges beyond the scope of the current project. Using methodology recently developed by CBRE Consulting Inc. in a recent evaluation of the impact of UCSD on the economy, this project is estimated to create 9 new jobs and result in approximately $1 million in total spending in California. Considering the dynamic interaction of the subcontracting institution with the local and national economy, a similar estimation can be made for The Scripps Research Institute.
PUBLIC HEALTH RELEVANCE: This project aims to achieve a better understanding of how alcohol addiction and withdrawal affects neuronal communication in the central nervous system at levels of single neurons and neural circuits. Specifically, we will develop and optimize technologies for the study of alcohol-related dysfunctions of neural circuits that will greatly contribute to a better understanding of the pathogenesis of alcohol addiction. Ultimately, this project will contribute to the development of novel therapeutical concepts providing additional socio-economic benefit.
描述(由申请人提供):本提案涉及广泛的挑战领域(06)“使能技术”和特定的挑战主题06-AA-106,“酒精相关神经回路分析的技术开发”。该提案的申请人一直在进行成功的跨学科合作,以解决本主题所关注的科学和技术挑战。显然,尽管在过去二十年中积累了大量有关酒精影响的分子和细胞机制的数据,但用于分析酒精相关神经回路和动力学的先进技术尚未得到充分利用。在酒精影响的神经回路的研究中使用最先进的电生理和计算技术将为更好地理解与成瘾和戒断的行为效应密切相关的回路和系统水平机制提供机会。事实上,这是我们建议的主要目的。在两个具体目标下描述的工作将包括开发和优化以前未用于酒精相关神经回路研究的新技术。集中在一个扩展的杏仁核,在大脑的动机/奖励系统中最重要的领域之一,我们提出了一系列的实验与复杂的电生理方法,将阐明酒精依赖和退出的神经机制,从系统神经科学的角度。在第一个具体的目标,我们将其内在的生物物理特性,在正常和依赖动物的神经元的整合和动力学特性的终纹(jcBNST,扩展杏仁核电路的一个中心元素)。接下来,我们将描述已知在酒精依赖中发挥重要作用的神经调节输入如何改变jcBNST神经元的动力学反应。在这里,我们将使用一种基于计算机的电生理技术,称为动态钳。这种技术将使我们能够以极高的精度和时间分辨率分析细胞动力学和电路相互作用,同时保持神经元处于高电导状态,与完整大脑中的情况相似。这种方法的新奇在于,动态箝位将显示它们如何在活跃的、时间复杂的突触环境中发挥作用,以及与酒精相关的内在特性变化如何影响它们的输出。我们还将能够检测和分析复杂形式的神经计算,例如以前没有详细研究的细胞共振和模式选择性。在第二个具体目标中,我们将研究酒精在回路水平的相互作用,可塑性和多巴胺和促肾上腺皮质激素释放因子的调制的影响。对于这些实验,我们将建立一个新的电生理系统,能够同时记录几十个神经元的尖峰活动,并提供时空结构的刺激模式到神经回路。这种多电极系统将使我们能够观察到突触连接,jcBNST内的信号转导及其向下游神经元群体的整体网络输出中与酒精相关的变化。虽然在这个项目中,我们将专注于一个特定的大脑区域,这是已知的酒精和滥用药物的影响最大的,我们利用的技术的广泛适用性将打开解决与大脑的其他功能相关的科学和健康问题的研究的可能性。这将加强我们研究的长期影响。除了科学效益外,该项目还将通过创新和创造就业机会促进区域和国家经济的发展。未来的经济安全将通过立即雇用一名早期研究员(首席研究员)和两名博士后学者来促进。本提案中描述的创新研究计划将为合作和更多有动力的年轻科学家的参与提供进一步的可能性。长期的影响将是新知识的产生,为识别与酒精成瘾相关的神经/行为障碍的治疗靶点以及开发复发的新治疗靶点做出重要贡献。拟议的研究还将有助于开发适用于生物系统的新的创新技术,并应对当前项目范围以外的科学挑战。使用CBRE咨询公司最近开发的方法。在最近对UCSD对经济影响的评估中,该项目估计将创造9个新的就业机会,并在加州产生约100万美元的总支出。考虑到分包机构与地方和国家经济的动态互动,可以对斯克里普斯研究所作出类似的估计。
公共卫生关系:该项目旨在更好地了解酒精成瘾和戒断如何在单个神经元和神经回路水平上影响中枢神经系统中的神经元通信。具体来说,我们将开发和优化用于研究酒精相关神经回路功能障碍的技术,这将大大有助于更好地了解酒精成瘾的发病机制。最终,该项目将有助于开发新的治疗概念,提供额外的社会经济效益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Attila Szucs其他文献
Attila Szucs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Attila Szucs', 18)}}的其他基金
The impact of alcohol addiction on circuit dynamics in the extended amygdala
酒精成瘾对扩展杏仁核回路动力学的影响
- 批准号:
7936063 - 财政年份:2009
- 资助金额:
$ 49.99万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant














{{item.name}}会员




