Machine Learning Analysis of Genetic Modulators of Vaccine Immune Response
疫苗免疫反应基因调节剂的机器学习分析
基本信息
- 批准号:7919847
- 负责人:
- 金额:$ 34.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-04 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdverse eventAffectAlgorithmsAnthrax VaccinesAnthrax diseaseAntibody FormationAppearanceArchitectureBioinformaticsBiologicalCenters for Disease Control and Prevention (U.S.)ClassificationClinical DataCollectionCommunitiesComplexComputer softwareCouplingDNA SequenceDataDecision TreesDependencyDevelopmentDiseaseDisease susceptibilityEngineeringGasesGene CombinationsGenesGeneticGenetic EpistasisGenetic ModelsGenetic PolymorphismGoalsHeterogeneityHumanImmune responseImmunityInflammatoryInformation TheoryLearningLeftLogistic RegressionsMachine LearningMeasuresMethodsModelingNoisePathway interactionsPhenotypePredispositionResearchSample SizeSerologicalSimulateSingle Nucleotide PolymorphismSmallpoxSmallpox VaccineSoftware ToolsStatistical MethodsSusceptibility GeneSystemTestingThermodynamicsVaccinationVaccinesVariantabstractingbaseevaporationforestgene environment interactiongene interactiongenetic analysisgenetic associationgenetic variantgenome wide association studygenome-widegenome-wide analysisnovelopen sourceparticlestemuser-friendlyvolunteer
项目摘要
Abstract
Machine Learning Analysis of Genetic Modulators of Vaccine Immune Response.
This proposal describes the development of a machine-learning strategy to identify interacting susceptibility
loci in polygenic biological endpoints, with a focus on smallpox and anthrax vaccine-related adverse events
(AEs) and variation in serologic antibody response. The appearance of AEs following smallpox vaccination
stems from excess stimulation of inflammatory pathways and is likely affected by multiple, interacting genetic
factors. Some of these gene-gene interactions may be epistatic, having no distinct marginal effect for any
single variant. Analytical approaches are needed for testing association in genome-wide data to account for
conditional dependencies between genetic variants while still accounting for co-occurring variants with high
marginal effects. We have introduced a machine-learning feature selection and optimization method called
Evaporative Cooling (EC), which is based on information theory and the statistical thermodynamics of cooling a
system of interacting particles by evaporation. The objective of the EC learner is the identification of
susceptibility or protective genes in genome-wide DNA sequence data. This novel filter method, which
includes no assumptions regarding gene interaction architecture or interaction order, has been shown to
identify a spectrum of disease susceptibility models, including marginal main effects and pure interaction
effects. Characterizing the genetic basis of multifactorial phenotypes in genome-wide sequence data is also
computationally challenging due to the presence of a large number of noise variants, or variants that are
irrelevant to the phenotype. Thus, the EC algorithm evaporates (i.e., removes) noise variants, leaving behind a
minimal collection of variants enriched for relevance to the given phenotype. We propose to advance this
method to characterize and interpret singe-gene, gene-gene and gene-environment interactions all of which
may modulate complex phenotypes such as vaccine-associated AEs and human immune response. This
strategy will be developed with the aid of artificial data, simulated under a variety of conditions observed in real
data, and the strategy will be tested on single nucleotide polymorphism (SNP) and clinical data from volunteers
from a NIAID/NIH-sponsored trial to evaluate the Aventis Pasteur Smallpox Vaccine and a Center for Disease
Control sponsored trial to evaluate Anthrax Vaccine Adsorbed.
摘要
疫苗免疫应答遗传调节因子的机器学习分析。
该提案描述了一种机器学习策略的发展,以确定相互作用的易感性
多基因生物学终点中的基因座,重点关注天花和炭疽疫苗相关不良事件
(AEs)和血清学抗体应答的变化。天花疫苗接种后出现的AE
源于炎症通路的过度刺激,可能受到多种相互作用的遗传因素的影响。
因素其中一些基因间的相互作用可能是上位性的,对任何一个基因都没有明显的边际效应。
单一变量。需要分析方法来测试全基因组数据中的关联,以解释
遗传变异之间的条件依赖性,同时仍然考虑具有高
边际效应我们介绍了一种机器学习特征选择和优化方法,
蒸发冷却(EC)是一种基于信息论和冷却过程统计热力学的新型冷却技术,
通过蒸发相互作用的粒子系统。EC学习者的目标是识别
易感性或保护性基因在全基因组DNA序列数据。这种新颖的滤波方法,
不包括关于基因相互作用结构或相互作用顺序的假设,已被证明,
确定一系列疾病易感性模型,包括边际主效应和纯相互作用
方面的影响.在全基因组序列数据中表征多因子表型的遗传基础也是
由于存在大量的噪声变量,或者
与表型无关。因此,EC算法蒸发(即,删除)噪声变量,留下一个
富集与给定表型相关的变体的最小集合。我们建议推进这一点
描述和解释单基因、基因-基因和基因-环境相互作用的方法,
可能调节复杂的表型,如疫苗相关AE和人体免疫应答。这
战略将在人工数据的帮助下制定,这些数据是在真实的环境中观察到的各种条件下模拟的
数据,该策略将在单核苷酸多态性(SNP)和志愿者的临床数据上进行测试
来自NIAID/NIH赞助的评估Aventis Pasteur天花疫苗的试验,
对照组申办的评价吸附炭疽疫苗的试验。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Six Degrees of Epistasis: Statistical Network Models for GWAS.
- DOI:10.3389/fgene.2011.00109
- 发表时间:2011
- 期刊:
- 影响因子:3.7
- 作者:McKinney BA;Pajewski NM
- 通讯作者:Pajewski NM
Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder.
- DOI:10.1038/tp.2012.80
- 发表时间:2012-08-14
- 期刊:
- 影响因子:6.8
- 作者:Pandey A;Davis NA;White BC;Pajewski NM;Savitz J;Drevets WC;McKinney BA
- 通讯作者:McKinney BA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brett McKinney其他文献
Brett McKinney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brett McKinney', 18)}}的其他基金
GENE-GENE INTERACTION NETWORKS IN GENOME WIDE ASSOCIATION STUDIES
全基因组关联研究中的基因-基因相互作用网络
- 批准号:
8364348 - 财政年份:2011
- 资助金额:
$ 34.63万 - 项目类别:
Cytokine Signaling Network Response to Smallpox Vaccine
细胞因子信号网络对天花疫苗的反应
- 批准号:
7389130 - 财政年份:2006
- 资助金额:
$ 34.63万 - 项目类别:
Cytokine Signaling Network Response to Smallpox Vaccine
细胞因子信号网络对天花疫苗的反应
- 批准号:
7491749 - 财政年份:2006
- 资助金额:
$ 34.63万 - 项目类别:
Cytokine Signaling Network Response to Smallpox Vaccine
细胞因子信号网络对天花疫苗的反应
- 批准号:
7208003 - 财政年份:2006
- 资助金额:
$ 34.63万 - 项目类别:
Cytokine Signaling Network Response to Smallpox Vaccine
细胞因子信号网络对天花疫苗的反应
- 批准号:
7099789 - 财政年份:2006
- 资助金额:
$ 34.63万 - 项目类别:
Cytokine Signaling Network Response to Smallpox Vaccine
细胞因子信号网络对天花疫苗的反应
- 批准号:
7612652 - 财政年份:2006
- 资助金额:
$ 34.63万 - 项目类别:
Cytokine Signaling Network Response to Smallpox Vaccine
细胞因子信号网络对天花疫苗的反应
- 批准号:
8004341 - 财政年份:2006
- 资助金额:
$ 34.63万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 34.63万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 34.63万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 34.63万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 34.63万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 34.63万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 34.63万 - 项目类别: