Metabolic heterogeneity and antibiotic susceptibility in biofilms

生物膜中的代谢异质性和抗生素敏感性

基本信息

  • 批准号:
    7890252
  • 负责人:
  • 金额:
    $ 37.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-07 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Biofilms are microbial communities that grow attached to a surface. Biofilm-based infections occur frequently, and biofilm growth on indwelling devices is very difficult to eradicate. Low rates of antibiotic transport within biofilms, protective effects of the biofilm matrix, and low rates of metabolic activity within the biofilm interior have all been found to contribute to the persistence of these infections, but there is currently little understanding of the processes responsible for these effects. While spatial heterogeneity in biofilms is clearly important to selection of therapy for biofilm-based infections, little information is available on the way in which local environmental conditions influence the development of spatial patterns in biofilms, and hence how the effectiveness of antibiotics varies depending on the body site and type of indwelling device. We hypothesize that spatial patterns of metabolic activity within a biofilm are influenced by spatial patterns in the flow environment, and that these interactions cause biofilm complexity to increase over time. We also hypothesize that the flow environment affects biofilm antimicrobial susceptibility not only by influencing delivery of antimicrobials to cells within the biofilm but also by dictating metabolic gradients within the community. We propose to address these hypotheses through the following specific aims. Aim 1: Observe growth of mono- species biofilms in a planar flow cell in order to assess changes in biofilm morphology, transport patterns, and metabolic activity with increasing spatial variability in environmental flow conditions. Aim 2: Observe the effectiveness of antibiotic treatment in eradicating biofilms having different degrees of spatial complexity, and relate the distribution of local killing efficiency to spatial patterns in transport conditions and metabolic activity. Aim 3: Develop an improved numerical model to allow quantitative analysis of the effects described above. Aim 4: Use the model to clarify multi-scale flow-biofilm interactions, and particularly to evaluate the key features that contribute to the survival of subpopulations of cells in biofilms under antibiotic treatment. We propose to achieve these aims by using a combination of novel experiments and numerical modeling. We will conduct experiments on biofilm growth and treatment in a new experimental system that provides the ability to impose a precisely controlled degree of spatial variability in inflow and outflow patterns. Biofilm growth, changes in flow and oxygen distributions, transport of antibiotic, and the resulting cell death will all be observed directly in situ. We will utilize these new and unique observations to support development of a new numerical model for biofilm development, which will subsequently be used to simulate the effectiveness of antibiotic treatment in eradicating biofilms under different local growth conditions. This combination of measurements and modeling will provide unique insight into the way in which biofilm growth interacts with and modifies the external flow, and ultimately how this complex interaction controls the overall formation of the biofilm and the effects of introduced antimicrobial agents on cells residing in the biofilm matrix. PUBLIC HEALTH RELEVANCE: Metabolic heterogeneity and antibiotic susceptibility in biofilms Summary Narrative Biofilm-based infections of inserted and implanted medical devices such as catheters, neurosurgical devices, and orthopedic devices are difficult to treat. Low rates of antibiotic transport within biofilms, protective effects of the biofilm matrix, and low rates of metabolic activity within the biofilm interior have all been found to contribute to the persistence of these infections, but there is currently little understanding of the processes responsible for these effects. The proposed work will advance understanding of how local environmental conditions influence biofilm growth, and will develop improved tools for assessing the effectiveness of antibiotics against biofilm-based infections.
描述(由申请人提供):生物膜是附着在表面上生长的微生物群落。基于生物膜的感染经常发生,并且留置装置上生物膜的生长很难根除。生物膜内抗生素转运率低、生物膜基质的保护作用以及生物膜内部代谢活动率低都被发现导致这些感染的持续存在,但目前对造成这些影响的过程知之甚少。虽然生物膜的空间异质性对于基于生物膜的感染的治疗选择显然很重要,但关于当地环境条件如何影响生物膜空间模式的发展以及抗生素的有效性如何根据身体部位和留置装置类型而变化的信息很少。我们假设生物膜内代谢活动的空间模式受到流动环境中空间模式的影响,并且这些相互作用导致生物膜复杂性随着时间的推移而增加。我们还假设流动环境不仅通过影响抗菌药物向生物膜内细胞的输送,而且还通过决定群落内的代谢梯度来影响生物膜抗菌敏感性。我们建议通过以下具体目标来解决这些假设。目标 1:观察平面流动池中单物种生物膜的生长,以评估随着环境流动条件的空间变异性的增加,生物膜形态、运输模式和代谢活动的变化。目标 2:观察抗生素治疗消除不同空间复杂程度的生物膜的有效性,并将局部杀灭效率的分布与运输条件和代谢活动的空间模式联系起来。目标 3:开发改进的数值模型,以便对上述影响进行定量分析。目标 4:使用该模型阐明多尺度流-生物膜相互作用,特别是评估有助于生物膜中细胞亚群在抗生素治疗下存活的关键特征。我们建议通过结合新颖的实验和数值建模来实现这些目标。我们将在一个新的实验系统中进行生物膜生长和处理的实验,该系统能够在流入和流出模式中施加精确控制的空间变异程度。生物膜的生长、流量和氧气分布的变化、抗生素的运输以及由此产生的细胞死亡都将在原位直接观察。我们将利用这些新的和独特的观察结果来支持开发生物膜形成的新数值模型,该模型随后将用于模拟抗生素治疗在不同局部生长条件下消除生物膜的有效性。这种测量和建模的结合将为生物膜生长与外部流动相互作用并改变外部流动的方式提供独特的见解,以及最终这种复杂的相互作用如何控制生物膜的整体形成以及引入的抗菌剂对生物膜基质中细胞的影响。 公共卫生相关性:生物膜中的代谢异质性和抗生素敏感性 摘要 叙述 插入和植入的医疗器械(例如导管、神经外科器械和骨科器械)的基于生物膜的感染很难治疗。生物膜内抗生素转运率低、生物膜基质的保护作用以及生物膜内部代谢活动率低都被发现导致这些感染的持续存在,但目前对造成这些影响的过程知之甚少。拟议的工作将增进对当地环境条件如何影响生物膜生长的理解,并将开发改进的工具来评估抗生素对生物膜感染的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AARON I PACKMAN其他文献

AARON I PACKMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AARON I PACKMAN', 18)}}的其他基金

Metabolic heterogeneity and antibiotic susceptibility in biofilms
生物膜中的代谢异质性和抗生素敏感性
  • 批准号:
    8318234
  • 财政年份:
    2010
  • 资助金额:
    $ 37.94万
  • 项目类别:
Metabolic heterogeneity and antibiotic susceptibility in biofilms
生物膜中的代谢异质性和抗生素敏感性
  • 批准号:
    8529188
  • 财政年份:
    2010
  • 资助金额:
    $ 37.94万
  • 项目类别:
Metabolic heterogeneity and antibiotic susceptibility in biofilms
生物膜中的代谢异质性和抗生素敏感性
  • 批准号:
    8137993
  • 财政年份:
    2010
  • 资助金额:
    $ 37.94万
  • 项目类别:
Synchrotron imaging of crystalline biofilms in urinary catheters
导尿管中结晶生物膜的同步加速器成像
  • 批准号:
    7661282
  • 财政年份:
    2009
  • 资助金额:
    $ 37.94万
  • 项目类别:
Synchrotron imaging of crystalline biofilms in urinary catheters
导尿管中结晶生物膜的同步加速器成像
  • 批准号:
    7849922
  • 财政年份:
    2009
  • 资助金额:
    $ 37.94万
  • 项目类别:
Metabolic heterogeneity and antibiotic susceptibility in biofilms
生物膜中的代谢异质性和抗生素敏感性
  • 批准号:
    7914896
  • 财政年份:
    2009
  • 资助金额:
    $ 37.94万
  • 项目类别:
Pathogen survival in transport-limited environments
病原体在运输受限的环境中存活
  • 批准号:
    7426942
  • 财政年份:
    2006
  • 资助金额:
    $ 37.94万
  • 项目类别:
Pathogen survival in transport-limited environments
病原体在运输受限的环境中存活
  • 批准号:
    7237823
  • 财政年份:
    2006
  • 资助金额:
    $ 37.94万
  • 项目类别:
Pathogen survival in transport-limited environments
病原体在运输受限的环境中存活
  • 批准号:
    7143665
  • 财政年份:
    2006
  • 资助金额:
    $ 37.94万
  • 项目类别:
Pathogen survival in transport-limited environments
病原体在运输受限的环境中存活
  • 批准号:
    7628062
  • 财政年份:
    2006
  • 资助金额:
    $ 37.94万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了